Climate Studies

GRACE Mission: 15 Years of Watching Water on Earth

Posted on Updated on

Written by Carol Rasmussen
NASA Earth Science News Team


Artists_concept_of_the_Gravity_Recovery_and_Climate_Experiment_GRACE_from_December_2002.jpg
Artists concept of the Gravity Recovery and Climate Experiment GRACE from December 2002


Fast Facts

  • In 15 years of operations, the GRACE satellite mission has revolutionized our view of how water moves and is stored on Earth.
  • GRACE measures changes in the local pull of gravity as water shifts around Earth due to changing seasons, weather and climate processes.
  • Among other innovations, GRACE gave us the first space-based view of water beneath Earth’s surface, giving insight into where aquifers may be shrinking or dry soils contributing to drought.
  • The GRACE Follow-On mission, launching in early 2018, will extend GRACE’s innovative measurements

 

“Revolutionary” is a word you hear often when people talk about the GRACE mission. Since the twin satellites of the U.S./German Gravity Recovery and Climate Experiment  launched on March 17, 2002, their data have transformed scientists’ view of how water moves and is stored around the planet.

“With GRACE, we effectively created a new field of spaceborne remote sensing: tracking the movement of water via its mass,” said Michael Watkins, the original GRACE project scientist and now director of NASA’s Jet Propulsion Laboratory, Pasadena, California.

Read the rest of this entry »

Advertisements

NASA Satellite Finds Unreported Source of Toxic Air Pollution

Posted on Updated on

 

Human-made sulfur dioxide emissions from a medium-size power plant
New research has detected smaller sulfur dioxide concentrations and sources around the world, including human-made sources such as medium-size power plants and oil-related activities.
Credit: EPA
 
Data from NASA’s Aura spacecraft, illustrated here, were analyzed by scientists to produce improved estimates of sulfur dioxide sources and concentrations worldwide between 2005 and 2014.

Credit: NASA

Using a new satellite-based method, scientists at NASA, Environment and Climate Change Canada, and two universities have located 39 unreported and major human-made sources of toxic sulfur dioxide emissions.

A known health hazard and contributor to acid rain, sulfur dioxide (SO2) is one of six air pollutants regulated by the U.S. Environmental Protection Agency. Current, sulfur dioxide monitoring activities include the use of emission inventories that are derived from ground-based measurements and factors, such as fuel usage. The inventories are used to evaluate regulatory policies for air quality improvements and to anticipate future emission scenarios that may occur with economic and population growth.

But, to develop comprehensive and accurate inventories, industries, government agencies and scientists first must know the location of pollution sources.

“We now have an independent measurement of these emission sources that does not rely on what was known or thought known,” said Chris McLinden, an atmospheric scientist with Environment and Climate Change Canada in Toronto and lead author of the study published this week in Nature Geosciences. 

“When you look at a satellite picture of sulfur dioxide, you end up with it appearing as hotspots – bull’s-eyes, in effect — which makes the estimates of emissions easier.”

The 39 unreported emission sources, found in the analysis of satellite data from 2005 to 2014, are clusters of coal-burning power plants, smelters, oil and gas operations found notably in the Middle East, but also in Mexico and parts of Russia. In addition, reported emissions from known sources in these regions were — in some cases — two to three times lower than satellite-based estimates. 

Altogether, the unreported and underreported sources account for about 12 percent of all human-made emissions of sulfur dioxide – a discrepancy that can have a large impact on regional air quality, said McLinden.

The research team also located 75 natural sources of sulfur dioxide — non-erupting volcanoes slowly leaking the toxic gas throughout the year. While not necessarily unknown, many volcanoes are in remote locations and not monitored, so this satellite-based data set is the first to provide regular annual information on these passive volcanic emissions.

“Quantifying the sulfur dioxide bull’s-eyes is a two-step process that would not have been possible without two innovations in working with the satellite data,” said co-author Nickolay Krotkov, an atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

First was an improvement in the computer processing that transforms raw satellite observations from the Dutch-Finnish Ozone Monitoring Instrument aboard NASA’s Aura spacecraft into precise estimates of sulfur dioxide concentrations. Krotkov and his team now are able to more accurately detect smaller sulfur dioxide concentrations, including those emitted by human-made sources such as oil-related activities and medium-size power plants. 

Being able to detect smaller concentrations led to the second innovation. McLinden and his colleagues used a new computer program to more precisely detect sulfur dioxide that had been dispersed and diluted by winds. They then used accurate estimates of wind strength and direction derived from a satellite data-driven model to trace the pollutant back to the location of the source, and also to estimate how much sulfur dioxide was emitted from the smoke stack.

“The unique advantage of satellite data is spatial coverage,” said Bryan Duncan, an atmospheric scientist at Goddard. 

“This paper is the perfect demonstration of how new and improved satellite datasets, coupled with new and improved data analysis techniques, allow us to identify even smaller pollutant sources and to quantify these emissions over the globe.”

The University of Maryland, College Park, and Dalhousie University in Halifax, Nova Scotia, contributed to this study.

For more information about, and access to, NASA’s air quality data, visit: http://so2.gsfc.nasa.gov/

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives, and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing. 

For more information about NASA Earth science research, visit: http://www.nasa.gov/earth

NASA Study Solves Two Mysteries About Wobbling Earth

Posted on Updated on

 

Earth does not always spin on an axis running through its poles. Instead, it wobbles irregularly over time, drifting toward North America throughout most of the 20th Century (green arrow). That direction has changed drastically due to changes in water mass on Earth. Credit: NASA/JPL-Caltech


Using
satellite data on how water moves around Earth, NASA scientists have solved two mysteries about wobbles in the planet’s rotation — one new and one more than a century old. The research may help improve our knowledge of past and future climate. 

Although a desktop globe always spins smoothly around the axis running through its north and south poles, a real planet wobbles. Earth’s spin axis drifts slowly around the poles; the farthest away it has wobbled since observations began is 37 feet (12 meters). These wobbles don’t affect our daily life, but they must be taken into account to get accurate results from GPS, Earth-observing satellites and observatories on the ground. 

In a paper ‘Climate–Driven Polar Motion: 2003–2015 (PDF)‘ published today in Science Advances, Surendra Adhikari and Erik Ivins of NASA’s Jet Propulsion Laboratory, Pasadena, California, researched how the movement of water around the world contributes to Earth’s rotational wobbles. Earlier studies have pinpointed many connections between processes on Earth’s surface or interior and our planet’s wandering ways. For example, Earth’s mantle is still readjusting to the loss of ice on North America after the last ice age, and the reduced mass beneath that continent pulls the spin axis toward Canada at the rate of a few inches each year. But some motions are still puzzling.


A Sharp Turn To The East

Before about 2000, Earth’s spin axis was drifting toward Canada (green arrow, left globe). JPL scientists calculated the effect of changes in water mass in different regions (center globe) in pulling the direction of drift eastward and speeding the rate (right globe). Credit: NASA/JPL-Caltech

Around the year 2000, Earth’s spin axis took an abrupt turn toward the east and is now drifting almost twice as fast as before, at a rate of almost 7 inches (17 centimeters) a year. “It’s no longer moving toward Hudson Bay, but instead toward the British Isles,” said Adhikari. “That’s a massive swing.” Adhikari and Ivins set out to explain this unexpected change.

Scientists have suggested that the loss of mass from Greenland and Antarctica’s rapidly melting ice sheet could be causing the eastward shift of the spin axis. The JPL scientists assessed this idea using observations from the NASA/German Aerospace Center Gravity Recovery and Climate Experiment (GRACE) satellites, which provide a monthly record of changes in mass around Earth. Those changes are largely caused by movements of water through everyday processes such as accumulating snowpack and groundwater depletion. They calculated how much mass was involved in water cycling between Earth’s land areas and its oceans from 2003 to 2015, and the extent to which the mass losses and gains pulled and pushed on the spin axis.

Adhikari and Ivins’ calculations showed that the changes in Greenland alone do not generate the gigantic amount of energy needed to pull the spin axis as far as it has shifted. In the Southern Hemisphere, ice mass loss from West Antarctica is pulling, and ice mass gain in East Antarctica is pushing, Earth’s spin axis in the same direction that Greenland is pulling it from the north, but the combined effect is still not enough to explain the speedup and new direction. Something east of Greenland has to be exerting an additional pull.

The researchers found the answer in Eurasia. 

“The bulk of the answer is a deficit of water in Eurasia: the Indian subcontinent and the Caspian Sea area,” Adhikari said. 

The finding was a surprise. This region has lost water mass due to depletion of aquifers and drought, but the loss is nowhere near as great as the change in the ice sheets. 

So why did the smaller loss have such a strong effect? The researchers say:

“It’s because the spin axis is very sensitive to changes occurring around 45 degrees latitude, both north and south. “This is well explained in the theory of rotating objects,” Adhikari explained. “That’s why changes in the Indian subcontinent, for example, are so important.””


New Insight on an Old Wobble
In the process of solving this recent mystery, the researchers unexpectedly came up with a promising new solution to a very old

The relationship between continental water mass and the east-west wobble in Earth’s spin axis. Losses of water from Eurasia correspond to eastward swings in the general direction of the spin axis (top), and Eurasian gains push the spin axis westward (bottom). Credit: NASA/JPL-Caltech

problem, as well. One particular wobble in Earth’s rotation has perplexed scientists since observations began in 1899. Every six to 14 years, the spin axis wobbles about 20 to 60 inches (0.5 to 1.5 meters) either east or west of its general direction of drift. “Despite tremendous theoretical and modeling efforts, no plausible mechanism has been put forward that could explain this enigmatic oscillation,” Adhikari said.

Lining up a graph of the east-west wobble during the period when GRACE data were available against a graph of changes in continental water storage for the same period, the JPL scientists spotted a startling similarity between the two. Changes in polar ice appeared to have no relationship to the wobble — only changes in water on land. Dry years in Eurasia, for example, corresponded to eastward swings, while wet years corresponded to westward swings.

When the researchers input the GRACE observations on changes in land water mass from April 2002 to March 2015 into classic physics equations that predict pole positions, they found that the results matched the observed east-west wobble very closely. “This is much more than a simple correlation,” coauthor Ivins said. “We have isolated the cause.”

The discovery raises the possibility that the 115-year record of east-west wobbles in Earth’s spin axis may, in fact, be a remarkably good record of changes in land water storage. “That could tell us something about past climate — whether the intensity of drought or wetness has amplified over time, and in which locations,” said Adhikari. 

“Historical records of polar motion are both globally comprehensive in their sensitivity and extraordinarily accurate,” said Ivins. “Our study shows that this legacy data set can be used to leverage vital information about changes in continental water storage and ice sheets over time.”

GRACE is a joint NASA mission with the German Aerospace Center (DLR) and the German Research Center for Geosciences (GFZ), in partnership with the University of Texas at Austin. For more information on the mission, visit: http://grace.jpl.nasa.gov or http://www.csr.utexas.edu/grace

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth

New NASA Web Portal Shines Beacon on Rising Seas

Posted on Updated on

Fort Lauderdale, Florida, is at risk from rising sea levels. Credit: Dave/Flickr Creative Commons/CC BY 2.0

 

Sea level rise is a critical global issue affecting millions across our planet. A new Web portal developed by NASA’s Jet Propulsion Laboratory, Pasadena, California, gives researchers, decision makers and the public alike a resource to stay up to date with the latest developments and scientific findings in this rapidly advancing field of study. 

The portal, “Sea Level Change: Observations from Space,” is online at: https://sealevel.nasa.gov/

The portal’s key features include:
 

  • “Understanding Sea Level,” a summary of decades of scientific research that has shaped our knowledge of sea level rise: its causes, including a warming, expanding ocean and melting ice on land; projections of future sea level rise; and ways in which humanity might adapt, largely drawn from NASA data.
     
  • An interactive data analysis tool, launching in mid-2016, that will allow direct access to NASA datasets on sea level. Users will be able to manipulate these datasets to automatically generate charts, graphs and maps of sea surface height, temperature and other factors. The analysis tool will also allow users to make forecasts of future conditions, as well as “hindcasts” — retroactive calculations of past trends and conditions.
     
  • News highlights and feature stories with strong visual elements that explore the findings of sea level researchers in detail.
     
  • An extensive library of published papers on sea level-related topics, hyperlinked to individual citations throughout “Understanding Sea Level.”
     
  • A multimedia section with dynamic still and video imagery, and a glossary of sea level terms.

  • A “frequently asked questions” section maintained by sea level scientists. Users can submit questions to scientists and data managers.


The website is optimized for most mobile devices, including smartphones and tablets.

“Sea Level Change: Observations from Space” is managed by a team led by JPL scientist Carmen Boening. The team is part of the NASA Sea Level Change Team research group. 

“With sea levels rising globally, as observed by satellites over the past decades, sea level change is a hot topic in climate research,” Boening said. “This new tool provides a NASA resource for researchers and a wealth of information for members of the public seeking a deeper understanding of sea level change.”

For more information on NASA’s Earth science activities, visit: http://www.nasa.gov/earth and http://climate.nasa.gov

JPL is a division of the California Institute of Technology in Pasadena.

 

 

 

 

 

A Still-Growing El Niño Set to Bear Down on US

Posted on Updated on

The latest satellite image of Pacific sea surface heights from Jason-2 (left) differs slightly from one 18 years ago from Topex/Poseidon (right). In Dec. 1997, sea surface height was more intense and peaked in November. This year the area of high sea levels is less intense but considerably broader. (Credit: NASA/JPL-Caltech)

 


The current strong El Niño brewing in the Pacific Ocean shows no signs of waning, as seen in the latest satellite image from the U.S./European Ocean Surface Topography Mission (OSTM)/Jason-2 mission. 

El Niño 2015 has already created weather chaos around the world. Over the next few months, forecasters expect the United States to feel its impacts as well. 

The latest Jason-2 image bears a striking resemblance to one from December 1997, by Jason-2’s predecessor, the NASA/Centre National d’Etudes Spatiales (CNES) Topex/Poseidon mission, during the last large El Niño event. Both reflect the classic pattern of a fully developed El Niño. The images can be viewed at:

http://sealevel.jpl.nasa.gov/elnino2015/index.html

The images show nearly identical, unusually high sea surface heights along the equator in the central and eastern Pacific: the signature of a big and powerful El Niño. Higher-than-normal sea surface heights are an indication that a thick layer of warm water is present.

El Niños are triggered when the steady, westward-blowing trade winds in the Pacific weaken or even reverse direction, triggering a dramatic warming of the upper ocean in the central and eastern tropical Pacific. Clouds and storms follow the warm water, pumping heat and moisture high into the overlying atmosphere. These changes alter jet stream paths and affect storm tracks all over the world.

This year’s El Niño has caused the warm water layer that is normally piled up around Australia and Indonesia to thin dramatically, while in the eastern tropical Pacific, the normally cool surface waters are blanketed with a thick layer of warm water. This massive redistribution of heat causes ocean temperatures to rise from the central Pacific to the Americas. It has sapped Southeast Asia’s rain in the process, reducing rainfall over Indonesia and contributing to the growth of massive wildfires that have blanketed the region in choking smoke. 

El Niño is also implicated in Indian heat waves caused by delayed monsoon rains, as well as Pacific island sea level drops, widespread coral bleaching that is damaging coral reefs, droughts in South Africa, flooding in South America and a record-breaking hurricane season in the eastern tropical Pacific. Around the world, production of rice, wheat, coffee and other crops has been hit hard by droughts and floods, leading to higher prices. 

In the United States, many of El Niño’s biggest impacts are expected in early 2016. Forecasters at the National Oceanic and Atmospheric Administration favor an El Niño-induced shift in weather patterns to begin in the near future, ushering in several months of relatively cool and wet conditions across the southern United States, and relatively warm and dry conditions over the northern United States. The latest El Niño forecast from NOAA’s Climate Prediction Center is at: http://www.cpc.ncep.noaa.gov/

While scientists still do not know precisely how the current El Niño will affect the United States, the last large El Niño in 1997-98 was a wild ride for most of the nation. The “Great Ice Storm” of January 1998 crippled northern New England and southeastern Canada, but overall, the northern tier of the United States experienced long periods of mild weather and meager snowfall. Meanwhile, across the southern United States, a steady convoy of storms slammed most of California, moved east into the Southwest, drenched Texas and — pumped up by the warm waters of the Gulf of Mexico — wreaked havoc along the Gulf Coast, particularly in Florida. 

“In 2014, the current El Niño teased us — wavering off and on,” said Josh Willis, project scientist for the Jason missions at JPL. “But in early 2015, atmospheric conditions changed, and El Niño steadily expanded in the central and eastern Pacific. Although the sea surface height signal in 1997 was more intense and peaked in November of that year, in 2015, the area of high sea levels is larger. This could mean we have not yet seen the peak of this El Niño.”

During normal, non-El Niño conditions, the amount of warm water in the western equatorial Pacific is so large that sea levels are about 20 inches (50 centimeters) higher in the western Pacific than in the eastern Pacific. “You can see it in the latest Jason-2 image of the Pacific,” said Willis. “The 8-inch [20-centimeter] drop in the west, coupled with the 10-inch [25-centimeter] rise in the east, has completely wiped out the tilt in sea level we usually have along the equator.”

The new Jason-2 image shows that the amount of extra-warm surface water from the current El Niño (depicted in red and white shades) has continuously increased, especially in the eastern Pacific within 10 degrees latitude north and south of the equator. In the western Pacific, the area of low sea level (blue and purple) has decreased somewhat from late October. The white and red areas indicate unusual patterns of heat storage. In the white areas, the sea surface is between 6 and 10 inches (15 to 25 centimeters) above normal, while in the red areas, it is about 4 inches (10 centimeters) above normal. The green areas indicate normal conditions. The height of the ocean water relates, in part, to its temperature, and is an indicator of the amount of heat stored in the ocean below. 

Within this area, surface temperatures are greater than 86 degrees Fahrenheit (30 degrees Celsius) in the central equatorial Pacific and near 70 degrees Fahrenheit (21 degrees Celsius) off the coast of the Americas. This El Niño signal encompasses a surface area of 6 million square miles (16 million square kilometers) — more than twice as big as the continental United States. 

While no one can predict the exact timing or intensity of U.S. El Niño impacts, for drought-stricken California and the U.S. West, it’s expected to bring some relief. 

“The water story for much of the American West over most of the past decade has been dominated by punishing drought,” said JPL climatologist Bill Patzert. “Reservoir levels have fallen to record or near-record lows, while groundwater tables have dropped dangerously in many areas. Now we’re preparing to see the flip side of nature’s water cycle — the arrival of steady, heavy rains and snowfall.” 

In 1982-83 and 1997-98, large El Niños delivered about twice the average amount of rainfall to Southern California, along with mudslides, floods, high winds, lightning strikes and high surf. But Patzert cautioned that El Niño events are not drought busters. “Over the long haul, big El Niños are infrequent and supply only seven percent of California’s water,” he said.

“Looking ahead to summer, we might not be celebrating the demise of this El Niño,” cautioned Patzert. “It could be followed by a La Niña, which could bring roughly opposite effects to the world’s weather.” 

La Niñas are essentially the opposite of El Niño conditions. During a La Niña episode, trade winds are stronger than normal, and the cold water that normally exists along the coast of South America extends to the central equatorial Pacific. La Niña episodes change global weather patterns and are associated with less moisture in the air over cooler ocean waters. This results in less rain along the coasts of North and South America and along the central and eastern equatorial Pacific, and more rain in the far Western Pacific.

El Niño events are part of the long-term, evolving state of global climate, for which measurements of sea surface height are a key indicator. 

For an animation of the evolution of the 2015 and 1997 El Niños, visit: https://sealevel.jpl.nasa.gov/elnino2015/2015-animated.gif

For more information on how NASA studies El Niño, visit: http://climatesciences.jpl.nasa.gov/enso

To learn more about NASA’s satellite altimetry programs, visit: http://sealevel.jpl.nasa.gov

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth

 

NASA Finds New Way to Track Ocean Currents from Space

Posted on Updated on

NASA’s GRACE satellites (artist’s concept) measured Atlantic Ocean bottom pressure as an indicator of deep ocean current speed. In 2009, this pattern of above-average (blue) and below-average (red) seafloor pressure revealed a temporary slowing of the deep currents. Image credit: NASA/JPL-Caltech

A team of NASA and university scientists has developed a new way to use satellite measurements to track changes in Atlantic Ocean currents, which are a driving force in global climate. The finding opens a path to better monitoring and understanding of how ocean circulation is changing and what the changes may mean for future climate.

In the Atlantic, currents at the ocean surface, such as the Gulf Stream, carry sun-warmed water from the tropics northeastward. As the water moves through colder regions, it sheds its heat. By the time it gets to Greenland, it’s so cold and dense that it sinks a couple of miles down into the ocean depths. There it turns and flows back south. This open loop of shallow and deep currents is known to oceanographers as the Atlantic Meridional Overturning Circulation (AMOC) — part of the “conveyor belt” of ocean currents circulating water, heat and nutrients around the globe and affecting climate.

Because the AMOC moves so much heat, any change in it is likely to be an important indicator of how our planet is responding to warming caused by increasing greenhouse gases. In the last decade, a few isolated measurements have suggested that the AMOC is slowing down and moving less water. Many researchers are expecting the current to weaken as a consequence of global warming, but natural variations may also be involved. To better understand what is going on, scientists would like to have consistent observations over time that cover the entire Atlantic

“This [new] satellite approach allows us to improve projections of future changes and — quite literally — get to the bottom of what drives ocean current changes,” said Felix Landerer of NASA’s Jet Propulsion Laboratory, Pasadena, California, who led the research team.

Landerer and his colleagues used data from the twin satellites of NASA’s Gravity Recovery and Climate Experiment (GRACE) mission. Launched in 2002, GRACE provides a monthly record of tiny changes in Earth’s gravitational field, caused by changes in the amount of mass below the satellites. The mass of Earth’s land surfaces doesn’t change much over the course of a month; but the mass of water on or near Earth’s surface does, for example, as ice sheets melt and water is pumped from underground aquifers. GRACE has proven invaluable in tracking these changes.

At the bottom of the atmosphere — on Earth’s surface — changes in air pressure (a measure of the mass of the air) tell us about flowing air, or wind. At the bottom of the ocean, changes in pressure tell us about flowing water, or currents. Landerer and his team developed a way to isolate in the GRACE gravity data the signal of tiny pressure differences at the ocean bottom that are caused by changes in the deep ocean currents.

“We’ve wanted to observe this phenomenon with GRACE since we launched 13 years ago, but it took us this long to figure out how to squeeze the information out of the data stream,” said Michael Watkins, director of the Center for Space Research at the University of Texas at Austin, former GRACE project scientist and a co-author of the study.

The squeezing process required some very advanced data processing, but not as many data points as one might think. “In principle, you’d think you’d have to measure every 10 yards or so across the ocean to know the whole flow,” Landerer explained. “But in fact, if you can measure the farthest eastern and western points very accurately, that’s all you need to know how much water is flowing north and south in the entire Atlantic at that section. That theory has long been known and is exploited in buoy networks, but this is the first time we’ve been able to do it successfully from space.”

The new measurements agreed well with estimates from a network of ocean buoys that span the Atlantic Ocean near 26 degrees north latitude, operated by the Rapid Climate Change (RAPID) group at the U.K.’s National Oceanography Centre, Southampton. The agreement gives the researchers confidence that the technique can be expanded to provide estimates throughout the Atlantic. In fact, the GRACE measurements showed that a significant weakening in the overturning circulation, which the buoys recorded in the winter of 2009-10, extended several thousand miles north and south of the buoys’ latitude.

Gerard McCarthy, a research scientist in the RAPID group who was not involved with the study, said, “The results highlight synergies between [direct measurements] like [those from] RAPID and remote sensing — all the more important given the rapid and surprising changes occurring in the North Atlantic at the present time.” Eric Lindstrom, NASA’s Physical Oceanography Program manager at the agency’s headquarters in Washington, pointed out, “It’s awesome that GRACE can see variations of deep water transport, [but] this signal might never have been detected or verified without the RAPID array. We will continue to need both in situ and space-based systems to monitor the subtle but significant variations of the ocean circulation.”

A paper in the journal Geophysical Research Letters describing the new technique and first results is available online in prepublication form: http://onlinelibrary.wiley.com/doi/10.1002/2015GL065730/abstract?campaign=wolacceptedarticle

Excitement Grows as NASA Carbon Sleuth Begins Year Two

Posted on Updated on

Global average carbon dioxide concentrations as seen by NASA's Orbiting Carbon Observatory-2 mission, June 1-15, 2015. OCO-2 measures carbon dioxide from the top of Earth's atmosphere to its surface. Higher carbon dioxide concentrations are in red, with lower concentrations in yellows and greens. Credit: NASA/JPL-Caltech
Global average carbon dioxide concentrations as seen by NASA’s Orbiting Carbon Observatory-2 mission, June 1-15, 2015. OCO-2 measures carbon dioxide from the top of Earth’s atmosphere to its surface. Higher carbon dioxide concentrations are in red, with lower concentrations in yellows and greens. Credit: NASA/JPL-Caltech

Scientists busy poring over more than a year of data from NASA’s Orbiting Carbon Observatory-2 (OCO-2) mission are seeing patterns emerge as they seek answers to the science questions that drive the mission.

Launched in July 2014, OCO-2, an experimental carbon-dioxide measurement mission, is designed to give the international science community a new view of the global carbon cycle in unprecedented detail. During its two-year primary mission, the satellite observatory is tracking the large-scale movement of carbon between Earth’s atmosphere, its plants and soil, and the ocean, from season to season and from year to year. OCO-2 began routine science operations in September 2014.

“We can already clearly see patterns of seasonal change and variations in carbon dioxide around the globe,” said Annmarie Eldering, OCO-2 deputy project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “Far more subtle features are expected to emerge over time.”

A new animation depicting the first full year of OCO-2 science operations is available at:

Armed with a full annual cycle of data, OCO-2 scientists are now beginning to study the net sources of carbon dioxide as well as their “sinks” — places in the Earth system that store carbon, such as the ocean and plants on land. This information will help scientists better understand the natural processes currently absorbing more than half the carbon dioxide emitted into the atmosphere by human activities. This is a key to understanding how Earth’s climate may change in the future as greenhouse gas concentrations increase.

The first year of data from the mission reveals a portrait of a dynamic, living planet. Between mid-May and mid-July 2015, OCO-2 saw a dramatic reduction in the abundance of atmospheric carbon dioxide across the northern hemisphere, as plants on land sprang to life and began rapidly absorbing carbon dioxide from the air to form new leaves, stems and roots.

During this intense, two-month period, known as the “spring drawdown,” OCO-2 measurements show the concentration of atmospheric carbon dioxide over much of the northern hemisphere decreased by two to three percent. That’s 8 to 12 parts per million out of the global average background concentration of 400 parts per million.

“That’s a big but expected change,” said Eldering.

“This is the first time we’ve ever had the opportunity to observe the spring drawdown across the entire northern hemisphere with this kind of spatial resolution, seeing changes from week to week.”

Also as expected, OCO-2 data show increased concentrations of carbon dioxide associated with human activities. Higher carbon dioxide levels of several parts per million are seen in regions where fossil fuels are being consumed by large power plants or megacities. Enhanced levels are also seen in the Amazon, Central Africa and Indonesia, where forests are being cleared and burned to create fields for agricultural use.

Researchers Abhishek Chatterjee of the Global Modeling and Assimilation Office at NASA’s Goddard Space Flight Center, Greenbelt, Maryland; and Michelle Gierach and Dave Schimel of JPL are investigating a strong correlation observed between atmospheric carbon dioxide over the Pacific Ocean and the current El Nino.

Fluctuations in carbon dioxide appear to be strongly linked with warmer sea surface temperatures. OCO-2’s unprecedented density of measurements is giving researchers a unique data set to understand and separate the roles that sea surface temperatures, winds, regional emissions and other variables may be playing in the carbon dioxide concentrations.

“We believe 2016 will see breakthrough OCO-2 research results, as scientists work to unravel the mysteries of finding carbon dioxide sources and natural sinks,” said Eldering.

Through most of OCO-2’s first year in space, the mission team was busy calibrating its science instrument, learning how to process its massive amount of data, and delivering data products to NASA’s Goddard Earth Sciences Data and Information Services Center (GES-DISC) in Greenbelt, Maryland, for distribution to the world’s science community.

Scientists are comparing OCO-2 data to ground-based measurements to validate the satellite data and tie it to internationally accepted standards for accuracy and precision.

Routine delivery of OCO-2 data — calibrated spectra of reflected sunlight that reveal the fingerprints of carbon dioxide — began in late 2014, while estimates of carbon dioxide derived from cloud-free OCO-2 observations have been delivered since March 2015. Recently, the OCO-2 team reprocessed the OCO-2 data set to incorporate improvements in instrument calibration and correct other known issues with the original data release.

Every day, OCO-2 orbits Earth 14.5 times and collects and returns about a million measurements. After eliminating data contaminated by clouds, aerosols and steep terrain, between 10 to 13 percent of the measurements are of sufficient quality to derive accurate estimates of the average carbon dioxide concentration between Earth’s surface and space. That’s at least 100 times more carbon dioxide measurements than from all other sources of precise carbon dioxide data combined.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information on OCO-2, visit: http://www.nasa.gov/oco-2

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth

NASA Study Finds Indian, Pacific Oceans Temporarily Hide Global Warming

Posted on Updated on

An Argo float, foreground. The new study included direct measurements of ocean temperatures from the global array of 3,500 Argo floats and other ocean sensors. Image credit: Argo program. (Image Credit: Germany/Ifremer)

A new NASA study of ocean temperature measurements shows that in recent years, extra heat from greenhouse gases has been trapped in the waters of the Pacific and Indian oceans. Researchers say this shifting pattern of ocean heat accounts for the slowdown in the global surface temperature trend observed during the past decade.

Researchers Veronica Nieves, Josh Willis and Bill Patzert of NASA’s Jet Propulsion Laboratory, Pasadena, California, found a specific layer of the Indian and Pacific oceans between 300 and 1,000 feet (100 and 300 meters) below the surface has been accumulating more heat than previously recognized. They also found the movement of warm water has affected surface temperatures. The results were published Thursday in the journal Science.

During the 20th century, as greenhouse gas concentrations increased and trapped more heat energy on Earth, global surface temperatures also increased. However, in the 21st century, this pattern seemed to change temporarily.

“Greenhouse gases continued to trap extra heat, but for about 10 years starting in the early 2000s, global average surface temperature stopped climbing and even cooled a bit,” said Willis.


In the study, researchers analyzed direct ocean temperature measurements, including observations from a global network of about 3,500 ocean temperature probes known as the Argo array. These measurements show temperatures below the surface have been increasing.

Maps of temperature trends at four layers in the global ocean show the patterns of heat below the surface, 2003-2012. The warmest water appears at depths of about 330-660 feet (100-200 meters, third panel from the top) in the western Pacific and Indian oceans, left of center. Image credit: NASA Earth Observatory

The Pacific Ocean is the primary source of the subsurface warm water found in the study, though some of that water now has been pushed to the Indian Ocean. Since 2003, unusually strong trade winds and other climatic features have been piling up warm water in the upper 1,000 feet of the western Pacific, pinning it against Asia and Australia.

“The western Pacific got so warm that some of the warm water is leaking into the Indian Ocean through the Indonesian archipelago,” said Nieves, the lead author of the study.

The movement of the warm Pacific water westward pulled heat away from the surface waters of the central and eastern Pacific, which resulted in unusually cool surface temperatures during the last decade. Because the air temperature over the ocean is closely related to the ocean temperature, this provides a plausible explanation for the global cooling trend in surface temperature.

Cooler surface temperatures also are related to a long-lived climatic pattern called the Pacific Decadal Oscillation, which moves in a 20- to 30-year cycle. It has been in a cool phase during the entire time surface temperatures showed cooling, bringing cooler-than-normal water to the eastern Pacific and warmer water to the western side. There currently are signs the pattern may be changing to the opposite phase, with observations showing warmer-than-usual water in the eastern Pacific.

“Given the fact the Pacific Decadal Oscillation seems to be shifting to a warm phase, ocean heating in the Pacific will definitely drive a major surge in global surface warming,” Nieves said.

Previous attempts to explain the global surface temperature cooling trend have relied more heavily on climate model results or a combination of modeling and observations, which may be better at simulating long-term impacts over many decades and centuries. This study relied on observations, which are better for showing shorter-term changes over 10 to 20 years. In shorter time spans, natural variations such as the recent slowdown in global surface temperature trends can have larger regional impacts on climate than human-caused warming.

Pauses of a decade or more in Earth’s average surface temperature warming have happened before in modern times, with one occurring between the mid-1940s and late 1970s.

“In the long term, there is robust evidence of unabated global warming,” Nieves said.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth

NASA Soil Moisture Mission Begins Science Operations

Posted on Updated on

 

High-resolution global soil moisture map from SMAP’s combined radar and radiometer instruments Southern U.S. SMAP soil moisture retrievals from April 27, 2015 High-resolution global soil moisture map from SMAP’s combined radar and radiometer instruments, acquired between May 4 and May 11, 2015 during SMAP’s commissioning phase. The map has a resolution of 5.6 miles (9 kilometers). The data gap is due to turning the instruments on and off during testing. Image Credit: NASA/JPL-Caltech/GSFC

NASA’s new Soil Moisture Active Passive (SMAP) mission to map global soil moisture and detect whether soils are frozen or thawed has begun science operations.
Launched Jan. 31 on a minimum three-year mission, SMAP will help scientists understand links among Earth’s water, energy and carbon cycles; reduce uncertainties in predicting climate; and enhance our ability to monitor and predict natural hazards like floods and droughts. SMAP data have additional practical applications, including improved weather forecasting and crop yield predictions.

A first global view of SMAP’s flagship product, a combined active-passive soil moisture map with a spatial resolution of 5.6 miles (9 kilometers), is available at:  http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA19337.

During SMAP’s first three months in orbit, referred to as SMAP’s “commissioning” phase, the observatory was first exposed to the space environment, its solar array and reflector boom assembly containing SMAP’s 20-foot (6-meter) reflector antenna were deployed, and the antenna and instruments were spun up to their full speed, enabling global measurements every two to three days.

The commissioning phase also was used to ensure that SMAP science data reliably flow from its instruments to science data processing facilities at NASA’s Jet Propulsion Laboratory in Pasadena, California, and the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

“Fourteen years after the concept for a NASA mission to map global soil moisture was first proposed, SMAP now has formally transitioned to routine science operations,” said Kent Kellogg, SMAP project manager at JPL. “SMAP’s science team can now begin the important task of calibrating the observatory’s science data products to ensure SMAP is meeting its requirements for measurement accuracy.”

Together, SMAP’s two instruments, which share a common antenna, produce the highest-resolution, most accurate soil moisture maps ever obtained from space. The spacecraft’s radar transmits microwave pulses to the ground and measures the strength of the signals that bounce back from Earth, whereas its radiometer measures microwaves that are naturally emitted from Earth’s surface.

“SMAP data will eventually reveal how soil moisture conditions are changing over time in response to climate and

Southern U.S. SMAP soil moisture retrievals from April 27, 2015, when severe storms were affecting Texas. Top: radiometer data alone. Bottom: combined radar and radiometer data with a resolution of 5.6 miles (9 kilometers). The combined product reveals more detailed surface soil moisture features.

how this impacts regional water availability,” said Dara Entekhabi, SMAP science team leader at the Massachusetts Institute of Technology in Cambridge. “SMAP data will be combined with data from other missions like NASA’s Global Precipitation Measurement, Aquarius and Gravity Recovery and Climate Experiment to reveal deeper insights into how the water cycle is evolving at global and regional scales.”

The new global image shows dry conditions in the southwestern United States and in Australia’s interior. Moist soil conditions are evident in the U.S. Midwest and in eastern regions of the United States, Europe and Asia. The far northern regions depicted in these SMAP maps do not indicate soil moisture measurements because the ground there was frozen.

Zooming in on the data allows a closer look at the benefits of combining SMAP’s radar and radiometer data. A segment of a SMAP orbit covering the central and southern United States on April 27 is available at: http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA19338.

The upper part of the image shows the radiometer-based estimate of soil moisture at a spatial resolution of 22.5 miles (36 kilometers). The lower part of the image shows the active-passive, or merged high-resolution (5.6 miles, or 9 kilometers), radar- and radiometer-derived soil moisture product.

In the days prior to this data collection, intense rainstorms pounded northern Texas. The areas affected by the storm in northern Texas and the Gulf Coast are visible in much greater detail. Such detail can be used to improve local weather forecasts, assist in monitoring drought in smaller watersheds, and forecast floods.

Over the next year, SMAP data will be calibrated and validated by comparing it against ground measurements of soil moisture and freeze/thaw state around the world at sites representing a broad spectrum of soil types, topography, vegetation and ground cover. SMAP data also will be compared with soil moisture data from existing aircraft-mounted instruments and other satellites.

Preliminary calibrated data will be available in August at designated public-access data archives, including the National Snow and Ice Data Center in Boulder, Colorado, and Alaska Satellite Facility in Fairbanks. Preliminary soil moisture and freeze/thaw products will be available in November, with validated measurements scheduled to be available for use by the general science community in the summer of 2016.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information on SMAP, visit: http://www.nasa.gov/smap.

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth.

It’s the Final Act for Larsen B Ice Shelf, NASA Finds

Posted on Updated on

 

Antarctica’s Larsen B Ice Shelf is likely to shatter into hundreds of icebergs like this one before the end of the decade, according to a new NASA study. Image credit: NSIDC/Ted Scambos

A new NASA study finds the last remaining section of Antarctica’s Larsen B Ice Shelf, which partially collapsed in 2002, is quickly weakening and is likely to disintegrate completely before the end of the decade.

A team led by Ala Khazendar of NASA’s Jet Propulsion Laboratory in Pasadena, California, found the remnant of the Larsen B Ice Shelf is flowing faster, becoming increasingly fragmented and developing large cracks. Two of its tributary glaciers also are flowing faster and thinning rapidly.

“These are warning signs that the remnant is disintegrating,” Khazendar said. “Although it’s fascinating scientifically to have a front-row seat to watch the ice shelf becoming unstable and breaking up, it’s bad news for our planet. This ice shelf has existed for at least 10,000 years, and soon it will be gone.”

Ice shelves are the gatekeepers for glaciers flowing from Antarctica toward the ocean. Without them, glacial ice enters the ocean faster and accelerates the pace of global sea level rise. This study, the first to look comprehensively at the health of the Larsen B remnant and the glaciers that flow into it, has been published online in the journal Earth and Planetary Science Letters.

Khazendar’s team used data on ice surface elevations and bedrock depths from instrumented aircraft participating in NASA’s Operation IceBridge, a multiyear airborne survey campaign that provides unprecedented documentation annually of Antarctica’s glaciers, ice shelves and ice sheets. Data on flow speeds came from spaceborne synthetic aperture radars operating since 1997.

http://www.jpl.nasa.gov/video/download.php?id=1376&download=hdmov

Khazendar noted his estimate of the remnant’s remaining life span was based on the likely scenario that a huge, widening rift that has formed near the ice shelf’s grounding line will eventually crack all the way across. The free-floating remnant will shatter into hundreds of icebergs that will drift away, and the glaciers will rev up for their unhindered move to the sea.

Located on the coast of the Antarctic Peninsula, the Larsen B remnant is about 625 square miles (1,600 square kilometers) in area and about 1,640 feet (500 meters) thick at its thickest point. Its three major tributary glaciers are fed by their own tributaries farther inland. 

“What is really surprising about Larsen B is how quickly the changes are taking place,” Khazendar said. “Change has been relentless.”

The remnant’s main tributary glaciers are named Leppard, Flask and Starbuck — the latter two after characters in the novel Moby Dick. The glaciers’ thicknesses and flow speeds changed only slightly in the first couple of years following the 2002 collapse, leading researchers to assume they remained stable. The new study revealed, however, that Leppard and Flask glaciers have thinned by 65-72 feet (20-22 meters) and accelerated considerably in the intervening years. The fastest-moving part of Flask Glacier had accelerated 36 percent by 2012 to a flow speed of 2,300 feet (700 meters) a year — comparable to a car accelerating from 55 to 75 mph.

Flask’s acceleration, while the remnant has been weakening, may be just a preview of what will happen when the remnant breaks up completely. After the 2002 Larsen B collapse, the glaciers behind the collapsed part of the shelf accelerated as much as eightfold — comparable to a car accelerating from 55 to 440 mph.

The third and smallest glacier, Starbuck, has changed little. Starbuck’s channel is narrow compared with those of the other glaciers, and the small glacier is strongly anchored to the bedrock, which, according to authors of the study, explains its comparative stability.

“This study of the Antarctic Peninsula glaciers provides insights about how ice shelves farther south, which hold much more land ice, will react to a warming climate,” said JPL glaciologist Eric Rignot, a coauthor of the paper.

The research team included scientists from JPL; the University of California, Irvine; and the University Centre in Svalbard, Norway. The paper is online at: http://go.nasa.gov/1bbpfsC.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth.