Organizations – Space Agencies

What Uranus Cloud Tops Have in Common With Rotten Eggs

Posted on Updated on

 

Uranus
Arriving at Uranus in 1986, Voyager 2 observed a bluish orb with extremely subtle features. A haze layer hid most of the planet’s cloud features from view. Credit: NASA/JPL-Caltech

  

Even after decades of observations and a visit by NASA’s Voyager 2 spacecraft, Uranus held on to one critical secret — the composition of its clouds. Now, one of the key components of the planet’s clouds has finally been verified. 

A global research team that includes Glenn Orton of NASA’s Jet Propulsion Laboratory in Pasadena, California, has spectroscopically dissected the infrared light from Uranus captured by the 26.25-foot (8-meter) Gemini North telescope on Hawaii’s Mauna Kea. They found hydrogen sulfide, the odiferous gas that most people avoid, in Uranus’ cloud tops. The long-sought evidence was published in the April 23rd issue of the journal Nature Astronomy.

The detection of hydrogen sulfide high in Uranus’ cloud deck (and presumably Neptune’s) is a striking difference from the gas giant planets located closer to the Sun — Jupiter and Saturn — where ammonia is observed above the clouds, but no hydrogen sulfide. These differences in atmospheric composition shed light on questions about the planets’ formation and history. 

 
Read the rest of this entry »

Advertisements

NASA Engineers Dream Big With Small Spacecraft

Posted on Updated on

 

 

MarCO CubeSat
An artist’s rendering of the twin Mars Cube One (MarCO) spacecraft as they fly through deep space. The MarCOs will be the first CubeSats — a kind of modular, mini-satellite — attempting to fly to another planet. They’re designed to fly along behind NASA’s InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight’s entry, descent and landing back to Earth. Though InSight’s mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. Credit: NASA/JPL

 

Many of NASA’s most iconic spacecraft towered over the engineers who built them: think Voyagers 1 and 2, Cassini or Galileo — all large machines that could measure up to a school bus.

But in the past two decades, mini-satellites called CubeSats have made space accessible to a new generation. These briefcase-sized boxes are more focused in their abilities and have a fraction of the mass — and cost — of some past titans of space.

In May, engineers will be watching closely as NASA launches its first pair of CubeSats designed for deep space. The twin spacecraft are called Mars Cube One, or MarCO, and were built at NASA’s Jet Propulsion Laboratory in Pasadena, California.

Read the rest of this entry »

NASA’s Webb Observatory Requires More Time for Testing and Evaluation; New Launch Window Under Review

Posted on Updated on

NASA Release by Jen Rae Wang / Steve Cole
Headquarters, Washington’

James_Webb_Space_Telescope.jpg 

 

NASA’s James Webb Space Telescope currently is undergoing final integration and test phases that will require more time to ensure a successful mission. After an independent assessment of remaining tasks for the highly complex space observatory, Webb’s previously revised 2019 launch window now is targeted for approximately May 2020. 

“Webb is the highest priority project for the agency’s Science Mission Directorate, and the largest international space science project in U.S. history. All the observatory’s flight hardware is now complete, however, the issues brought to light with the spacecraft element are prompting us to take the necessary steps to refocus our efforts on the completion of this ambitious and complex observatory,” said acting NASA Administrator Robert Lightfoot.

 

Read the rest of this entry »

SPACE-TIME: The Missing Mass Mystery

Posted on Updated on

By George McGinn
Cosmology and Space Research Institute

 
This illustration shows the three steps astronomers used to measure the universe’s expansion rate to an unprecedented accuracy, reducing the total uncertainty to 2.4 percent. Credits: NASA, ESA, A. Field (STScI), and A. Riess (STScI/JHU)


I don’t believe in Dark Matter or Dark Energy. Even the new Dark Flow.

While I would like to think that our cosmologists and physicists got lazy, what I really believe is they just created placeholders, misleading ones at that, but I wholeheartedly agree that we have no idea what they are, do, or if they are even real.

I like to watch PBS Space-Time on YouTube, as Host and Physicist Matt O’Dowd* would discuss topics that are relevant today in our field, and there is something for everyone, from the novice to the professionals. And while he sometimes will do numerous episodes, like on Dark Matter and Dark Energy, I don’t always agree with what he’s talking about.

But after watching the episode below (it is an older one, but the information is as relevant today as it was when it was reported on), I had to post a reply (which is below) and a short explanation, as I am working on a research paper on Dark Matter, Dark Energy, and the new voodoo science of “Dark Flow,” which I will address in another post here.

To see the episode in question:
 
 

Published on Oct 25, 2017 – For years, astronomers have been unable to find up to half of the baryonic matter in the universe. We may just have solved this problem. We’ve known for some time that around 95% of the energy content of the universe is in dark matter and dark energy. This dark sector doesn’t interact with light in any way and so is invisible to us. The remaining 5% – the light sector – represents all of the regular matter in the universe. Yet what if I told you that all of the stars and galaxies and galaxy clusters only comprise 10% of the light sector. The rest has proved as elusive as the dark sector. We think it must exist as extremely diffuse gas in between the galaxies, yet our intense searches miss up to half of it. At least until now.

 
 
Here is my reply post to their video on the matter. I have been spending years working on my own theory which I believe is more grounded in the Newtonian laws regarding matter, the expanding universe, and plausible explanations on Dark Matter and Dark Energy:
 
POST TO SPACE-TIME: What about matter that due to the faster than light expansion of the universe? Do we not count them? Ignore them? At the current rate of expansion, which I believe (no verified) is about 2.4, this would mean less mass would be within the visible range every year, 100, 1000+ years. In the area where light will never reach us there is still matter and star creation which must me counted to get an accurate, exact answer to the total mass to dark matter to dark energy (if this really is another name for the faster than light expansion of the universe)  ratio. Until them, this is no more than guess work.
 
To make this less confusing, what I am referring to is the speed of causality, or speed of light. In several episodes, you represented this on a graph, say X=time, Y=speed, and the speed of “c” cut the graph at 45 degrees. Now everything to the left of “c” is the visible universe, but due to the faster than “c” expansion of the universe, galaxies cross over the line into the area where light is not fast enough to cross over. The same goes for matter. If Dark Energy is a myth, and only explains the rapid expansion of the universe set in motion by the Big Bang, the missing mass is in the part we can’t see. And since we can’t see into it, we have no idea how big it is, nor how old it is. Ninety-five percent of our missing mass may reside there.
 

Newly Discovered Exoplanet May be Best Candidate in Search for Signs of Life

Posted on Updated on

Jason Dittmann
Harvard-Smithsonian Center for Astrophysics

Transiting rocky super-Earth found in habitable zone of quiet red dwarf star

This artist’s impression shows the exoplanet LHS 1140b, which orbits a red dwarf star 40 light-years from Earth and may be the new holder of the title “best place to look for signs of life beyond the Solar System”. Using ESO’s HARPS instrument at La Silla, and other telescopes around the world, an international team of astronomers discovered this super-Earth orbiting in the habitable zone around the faint star LHS 1140. This world is a little larger and much more massive than the Earth and has likely retained most of its atmosphere. Credit: ESO/spaceengine.org 


An exoplanet orbiting a red dwarf star 40 light-years from Earth may be the new holder of the title “best place to look for signs of life beyond the Solar System”. Using ESO’s HARPS instrument at La Silla, and other telescopes around the world, an international team of astronomers discovered a “super-Earth” orbiting in the habitable zone around the faint star LHS 1140. This world is a little larger and much more massive than the Earth and has likely retained most of its atmosphere. This, along with the fact that it passes in front of its parent stars as it orbits, makes it one of the most exciting future targets for atmospheric studies. The results will appear in the 20 April 2017 issue of the journal Nature.

Read the rest of this entry »

Asteroid to Fly Safely Past Earth on April 19

Posted on Updated on

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.

 

This computer-generated image depicts the flyby of asteroid 2014 JO25. The asteroid will safely fly past Earth on April 19 at a distance of about 1.1 million miles (1.8 million kilometers), or about 4.6 times the distance between Earth and the moon. Image credit: NASA/JPL-Caltech

 

A relatively large near-Earth asteroid discovered nearly three years ago will fly safely past Earth on April 19 at a distance of about 1.1 million miles (1.8 million kilometers), or about 4.6 times the distance from Earth to the moon. Although there is no possibility for the asteroid to collide with our planet, this will be a very close approach for an asteroid of this size. 

The asteroid, known as 2014 JO25, was discovered in May 2014 by astronomers at the Catalina Sky Survey near Tucson, Arizona — a project of NASA’s NEO Observations Program in collaboration with the University of Arizona. (An NEO is a near-Earth object). Contemporary measurements by NASA’s NEOWISE mission indicate that the asteroid is roughly 2,000 feet (650 meters) in size, and that its surface is about twice as reflective as that of the moon. At this time very little else is known about the object’s physical properties, even though its trajectory is well known.

 

Read the rest of this entry »

Solar Storms Can Drain Electrical Charge Above Earth

Posted on Updated on

Written by Carol Rasmussen
NASA’s Earth Science News Team

A solar eruption on Sept. 26, 2014, seen by NASA’s Solar Dynamics Observatory. If erupted solar material reaches Earth, it can deplete the electrons in the upper atmosphere in some locations while adding electrons in others, disrupting communications either way. Credit: NASA

 

New research on solar storms finds that they not only can cause regions of excessive electrical charge in the upper atmosphere above Earth’s poles, they also can do the exact opposite: cause regions that are nearly depleted of electrically charged particles. The finding adds to our knowledge of how solar storms affect Earth and could possibly lead to improved radio communication and navigation systems for the Arctic. 

A team of researchers from Denmark, the United States and Canada made the discovery while studying a solar storm that reached Earth on Feb. 19, 2014. The storm was observed to affect the ionosphere in all of Earth’s northern latitudes. Its effects on Greenland were documented by a network of global navigation satellite system, or GNSS, stations as well as geomagnetic observatories and other resources. Attila Komjathy of NASA’s Jet Propulsion Laboratory, Pasadena, California, developed software to process the GNSS data and helped with the data processing. The results were published in the journal Radio Science.

Read the rest of this entry »

Stars Born in Winds from Supermassive Black Holes

Posted on Updated on

 

ESO’s VLT spots brand-new type of star formation

Artist’s impression of a galaxy forming stars within powerful outflows of material blasted out from supermassive black holes at its core. Results from ESO’s Very Large Telescope are the first confirmed observations of stars forming in this kind of extreme environment. The discovery has many consequences for understanding galaxy properties and evolution. Credit: ESO/M. Kornmesser

Observations using ESO’s Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies. These are the first confirmed observations of stars forming in this kind of extreme environment. The discovery has many consequences for understanding galaxy properties and evolution. The results are published in the journal Nature.


A UK-led group of European astronomers used the MUSE and X-shooter instruments on the Very Large Telescope(VLT) at ESO’s Paranal Observatory in Chile to study an ongoing collision between two galaxies, known collectively as IRAS F23128-5919, that lie around 600 million light-years from Earth. The group observed the colossal winds of material — or outflows — that originate near the supermassive black hole at the heart of the pair’s southern galaxy, and have found the first clear evidence that stars are being born within them [1].

Such galactic outflows are driven by the huge energy output from the active and turbulent centres of galaxiesSupermassive black holes lurk in the cores of most galaxies, and when they gobble up matter they also heat the surrounding gas and expel it from the host galaxy in powerful, dense winds [2].

Read the rest of this entry »

NASA’s Juno Spacecraft Set for Fifth Jupiter Flyby

Posted on Updated on

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.

Dwayne Brown / Laurie Cantillo
NASA Headquarters, Washington

 

This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian “galaxy” of swirling storms. Credits: NASA/JPL-Caltech/SwRI/MSSS/Roman Tkachenko

 

NASA’s Juno spacecraft will make its fifth flyby over Jupiter’s mysterious cloud tops on Monday, March 27, at 1:52 a.m. PDT (4:52 a.m. EDT, 8:52 UTC).

At the time of closest approach (called perijove), Juno will be about 2,700 miles (4,400 kilometers) above the planet’s cloud tops, traveling at a speed of about 129,000 miles per hour (57.8 kilometers per second) relative to the gas-giant planet. All of Juno’s eight science instruments will be on and collecting data during the flyby.


Read the rest of this entry »

The Many Faces of Rosetta’s Comet 67P

Posted on Updated on

Markus Bauer
European Space Agency, Noordwijk, Netherlands

M. Ramy El-Maarry
University of Colorado

Matt Taylor

ESA Rosetta project scientist 

 

Moving_Boulder_on_Comet_67P.jpg
This image showcases changes identified in high-resolution images of Comet 67P/Churyumov-GerasimenkoA 100 foot-wide (30 meter), 28-million-pound (12.8-million-kilogram) boulder. Several sites of cliff collapse on comet 67P/Churyumov-Gerasimenko A 100 foot-wide (30 meter), 28-million-pound (12.8-million-kilogram) boulder, was found to have moved 460 feet (140 meters) on comet 67P/Churyumov-Gerasimenko in the lead up to perihelion in August 2015, when the comet’s activity was at its highest. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

 

NOTE: Make sure you check 0ut the accompanying Space Photo Exploration page for Comet 67P/Churyumov-Gerasimenko


Images returned from the European Space Agency’s Rosetta mission indicate that during its most recent trip through the inner solar system, the surface of comet 67P/Churyumov-Gerasimenko was a very active place – full of growing fractures, collapsing cliffs and massive rolling boulders. Moving material buried some features on the comet’s surface while exhuming others. A study on 67P’s changing surface was released Tuesday, March 21, in the journal Science.

“As comets approach the sun, they go into overdrive and exhibit spectacular changes on their surface,” said Ramy El-Maarry, study leader and a member of the U.S. Rosetta science team from the University of Colorado, Boulder. “This is something we were not able to really appreciate before the Rosetta mission, which gave us the chance to look at a comet in ultra-high resolution for more than two years.”

 

Read the rest of this entry »