Journal Nature

Newly Discovered Exoplanet May be Best Candidate in Search for Signs of Life

Posted on Updated on

Jason Dittmann
Harvard-Smithsonian Center for Astrophysics

Transiting rocky super-Earth found in habitable zone of quiet red dwarf star

This artist’s impression shows the exoplanet LHS 1140b, which orbits a red dwarf star 40 light-years from Earth and may be the new holder of the title “best place to look for signs of life beyond the Solar System”. Using ESO’s HARPS instrument at La Silla, and other telescopes around the world, an international team of astronomers discovered this super-Earth orbiting in the habitable zone around the faint star LHS 1140. This world is a little larger and much more massive than the Earth and has likely retained most of its atmosphere. Credit: ESO/ 

An exoplanet orbiting a red dwarf star 40 light-years from Earth may be the new holder of the title “best place to look for signs of life beyond the Solar System”. Using ESO’s HARPS instrument at La Silla, and other telescopes around the world, an international team of astronomers discovered a “super-Earth” orbiting in the habitable zone around the faint star LHS 1140. This world is a little larger and much more massive than the Earth and has likely retained most of its atmosphere. This, along with the fact that it passes in front of its parent stars as it orbits, makes it one of the most exciting future targets for atmospheric studies. The results will appear in the 20 April 2017 issue of the journal Nature.

Read the rest of this entry »


Stars Born in Winds from Supermassive Black Holes

Posted on Updated on


ESO’s VLT spots brand-new type of star formation

Artist’s impression of a galaxy forming stars within powerful outflows of material blasted out from supermassive black holes at its core. Results from ESO’s Very Large Telescope are the first confirmed observations of stars forming in this kind of extreme environment. The discovery has many consequences for understanding galaxy properties and evolution. Credit: ESO/M. Kornmesser

Observations using ESO’s Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies. These are the first confirmed observations of stars forming in this kind of extreme environment. The discovery has many consequences for understanding galaxy properties and evolution. The results are published in the journal Nature.

A UK-led group of European astronomers used the MUSE and X-shooter instruments on the Very Large Telescope(VLT) at ESO’s Paranal Observatory in Chile to study an ongoing collision between two galaxies, known collectively as IRAS F23128-5919, that lie around 600 million light-years from Earth. The group observed the colossal winds of material — or outflows — that originate near the supermassive black hole at the heart of the pair’s southern galaxy, and have found the first clear evidence that stars are being born within them [1].

Such galactic outflows are driven by the huge energy output from the active and turbulent centres of galaxiesSupermassive black holes lurk in the cores of most galaxies, and when they gobble up matter they also heat the surrounding gas and expel it from the host galaxy in powerful, dense winds [2].

Read the rest of this entry »

Dark Matter Less Influential in Galaxies in Early Universe

Posted on Updated on

Reinhard Genzel
Director, Max-Planck-Institut für extraterrestrische Physik
Garching bei München, Germany
March 15, 2017 


New observations indicate that massive, star-forming galaxies during the peak epoch of galaxy formation, 10 billion years ago, were dominated by baryonic or “normal” matter. This is in stark contrast to present-day galaxies, where the effects of mysterious dark matter seem to be much greater. This surprising result was obtained using ESO’s Very Large Telescope and suggests that dark matter was less influential in the early Universe than it is today. The research is presented in four papers, one of which will be published in the journal Nature this week.


VLT observations of distant galaxies suggest they were dominated by normal matter

We see normal matter as brightly shining stars, glowing gas and clouds of dust. But the more elusive dark matter does not emit, absorb or reflect light and can only be observed via its gravitational effects. The presence of dark matter can explain why the outer parts of nearby spiral galaxies rotate more quickly than would be expected if only the normal matter that we can see directly were present [1].

Now, an international team of astronomers led by Reinhard Genzel at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany have used the KMOS and SINFONI instruments at ESO’s Very Large Telescope in Chile [2] to measure the rotation of six massive, star-forming galaxies in the distant Universe, at the peak of galaxy formation 10 billion years ago.

What they found was intriguing: unlike spiral galaxies in the modern Universe, the outer regions of these distant galaxies seem to be rotating more slowly than regions closer to the core — suggesting there is less dark matter present than expected [3].


Read the rest of this entry »

Ultracool Dwarf and the Seven Planets

Posted on Updated on

Dr. Paola Rebusco
MIT – Experimental Study Group

This artist’s impression shows the view from the surface of one of the planets in the TRAPPIST-1 system. At least seven planets orbit this ultra cool dwarf star 40 light-years from Earth and they are all roughly the same size as the Earth. They are at the right distances from their star for liquid water to exist on the surfaces of several of them. This artist’s impression is based on the known physical parameters for the planets and stars seen, and uses a vast database of objects in the Universe. Credit: ESO/N. Bartmann/

Astronomers using the TRAPPIST–South telescope at ESO’s La Silla Observatory, the Very Large Telescope (VLT) at Paranal and the NASA Spitzer Space Telescope, as well as other telescopes around the world [1], have now confirmed the existence of at least seven small planets orbiting the cool red dwarf star TRAPPIST-1 [2]. All the planets, labelled TRAPPIST-1b, c, d, e, f, g and h in order of increasing distance from their parent star, have sizes similar to Earth [3].

Read the rest of this entry »

ESO Discovers Earth-Size Planet in Habitable Zone of Nearest Star

Posted on Updated on


This artist’s impression shows a view of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the solar system. The double star Alpha Centauri AB also appears in the image. Credit: ESO/M. Kornmesser

A newly discovered, roughly Earth-sized planet orbiting our nearest neighboring star might be habitable, according to a team of astronomers using the European Southern Observatory’s 3.6-meter telescope at La Silla, Chile, along with other telescopes around the world.

The exoplanet is at a distance from its star that allows temperatures mild enough for liquid water to pool on its surface.

“NASA congratulates ESO on the discovery of this intriguing planet that has captured the hopes and the imagination of the world,” says Paul Hertz, Astrophysics Division Director at NASA Headquarters, Washington. “We look forward to learning more about the planet, whether it holds ingredients that could make it suitable for life.”

The new planet circles Proxima Centauri, the smallest member of a triple star system known to science fiction fans everywhere as Alpha Centauri. Just over 4 light-years away, Proxima is the closest star to Earth, besides our own sun.

“This is really a game-changer in our field,” said Olivier Guyon, a planet-hunting affiliate at NASA’s Jet Propulsion Laboratory, Pasadena, California, and associate professor at the University of Arizona, Tucson. “The closest star to us has a possible rocky planet in the habitable zone. That’s a huge deal. It also boosts the already existing, mounting body of evidence that such planets are near, and that several of them are probably sitting quite close to us. This is extremely exciting.”

The science team that made the discovery, led by Guillem Anglada-Escudé of Queen Mary University of London, will publish its findings Aug. 25 in the Journal Nature in a 33-page paper titledA terrestrial planet candidate in a temperate orbit around Proxima Centauri. The team traced subtle wobbles in the star revealing, the presence of a star-tugging planet.

They determined that the new planet, dubbed Proxima b, is at least 1.3 times the mass of Earth. It orbits its star far more closely than Mercury orbits our sun, taking only 11 days to complete a single orbit — a “year” on Proxima b.

Long list of unknowns

The stunning announcement comes with plenty of caveats. While the new planet lies within its star’s “habitable zone” — a distance at which temperatures are right for liquid water — scientists do not yet know if the planet has an atmosphere.

It also orbits a red-dwarf star, far smaller and cooler than our sun. The planet likely presents only one face to its star, as the moon does to Earth, instead of rotating through our familiar days and nights. And Proxima b could be subject to potentially life-extinguishing stellar flares.

“That’s the worry in terms of habitability,” said Scott Gaudi, an astronomy professor at Ohio State University, Columbus, and JPL affiliate credited with numerous exoplanet discoveries. “This thing is being bombarded by a fair amount of high-energy radiation. It’s not obvious if it’s going to have a magnetic field strong enough to prevent its whole atmosphere from getting blown away. But those are really hard calculations, and I certainly wouldn’t put my money either way on that.”

Despite the unknowns, the discovery was hailed by NASA exoplanet hunters as a major milestone on the road to finding other possible life-bearing worlds within our stellar neighborhood.

“It definitely gives us something to be excited about,” said Sara Seager, a planetary science and physics professor at the Massachusetts Institute of Technology, Cambridge, and an exoplanet-hunting pioneer. “I think it will definitely motivate people to get moving.”

‘Not completely unexpected’

Statistical surveys of exoplanets — planets orbiting other stars — by NASA’s Kepler space telescope have revealed a large proportion of small planets around small stars, she said.

The Kepler data suggest we should expect at least one potentially habitable, Earth-size planet orbiting M-type stars, like Proxima, within 10 light-years of our solar system.

So the latest discovery was “not completely unexpected. We’re more lucky than surprised,” Seager said. But it “helps buoy our confidence that planets are everywhere.”

It’s especially encouraging for upcoming space telescopes, which can contribute to the study of the new planet. The James Webb Space Telescope, launching in 2018, may be able to follow-up on this planet with spectroscopy to determine the contents of its atmosphere. NASA’s Transiting Exoplanet Survey Satellite (TESS) will find similar planets in the habitable zone in the stellar backyard of our solar system in 2018.

One of TESS’s goals is to find planets orbiting nearby M-dwarf stars like Proxima Centauri.

“It’s great news just to know that M-dwarf planets could be as common as we think they are,” Seager said.

Another possible inspiration Proxima b could reignite: the admittedly far-off goal of sending a probe to another solar system.

Bill Borucki, an exoplanet pioneer, said the new discovery might inspire more interstellar research, especially if Proxima b proves to have an atmosphere.

Coming generations of space and ground-based telescopes, including large ground telescopes now under construction, could yield more information about the planet, perhaps inspiring ideas on how to pay it a visit.

“It may be that the first time we get really good information is from the newer telescopes that may be coming online in a decade or two,” said Borucki, now retired, a former principal investigator for Kepler, which has discovered the bulk of the more than 3,300 exoplanets found so far.

“Maybe people will talk about sending a probe to that star system,” Borucki said. “I think it does provide some inspiration for an interstellar mission, because now we know there is a planet in the habitable zone, probably around the mass of Earth, around the closest star. I think it does inspire a future effort to go there and check it out.”

To read the ESO press release, visit:

To learn more about NASA’s Exoplanet Program, visit:

Cloudy Days on Exoplanets May Hide Atmospheric Water

Posted on Updated on

Hot Jupiters, exoplanets around the same size as Jupiter that orbit very closely to their stars, often have cloud or haze layers in their atmospheres. This may prevent space telescopes from detecting atmospheric water that lies beneath the clouds, according to a study in the Astrophysical Journal. Image credit: NASA/JPL-Caltech


Water is a hot topic in the study of exoplanets, including “hot Jupiters,” whose masses are similar to that of Jupiter, but which are much closer to their parent star than Jupiter is to the sun. They can reach a scorching 2,000 degrees Fahrenheit (1,100 degrees Celsius), meaning any water they host would take the form of water vapor.

Astronomers have found many hot Jupiters with water in their atmospheres, but others appear to have none. Scientists at NASA’s Jet Propulsion Laboratory, Pasadena, California, wanted to find out what the atmospheres of these giant worlds have in common.

Researchers focused on a collection of hot Jupiters studied by NASA’s Hubble Space Telescope. They found that the atmospheres of about half of the planets were blocked by clouds or haze.

“The motivation of our study was to see what these planets would be like if they were grouped together, and to see whether they share any atmospheric properties,” said Aishwarya Iyer, a JPL intern and master’s degree candidate at California State University, Northridge, who led the study.

The new study, published in the June 1 issue of the Astrophysical Journal, suggests that clouds or haze layers could be preventing a substantial amount of atmospheric water from being detected by space telescopes. The clouds themselves are likely not made of water, as the planets in this sample are too hot for water-based clouds. 

“Clouds or haze seem to be on almost every planet we studied,” Iyer said. “You have to be careful to take clouds or haze into account, or else you could underestimate the amount of water in an exoplanet’s atmosphere by a factor of two.”

In the study, scientists looked at a set of 19 hot Jupiters previously observed by Hubble. The telescope’s Wide Field Camera 3 had detected water vapor in the atmospheres of 10 of these planets, and no water on the other nine. But that information was spread across more than a dozen studies. The methods of analyzing and interpretation varied because the studies were conducted separately. There had not been one overarching analysis of all these planets.

To compare the planets and look for patterns, the JPL team had to standardize the data: Researchers combined the datasets for all 19 hot Jupiters to create an average overall light spectrum for the group of planets. They then compared these data to models of clear, cloud-free atmospheres and those with various cloud thicknesses.

The scientists determined that, for almost every planet they studied, haze or clouds were blocking half of the atmosphere, on average.

“In some of these planets, you can see water peeking its head up above the clouds or haze, and there could still be more water below,” Iyer said.

Scientists do not yet know the nature of these clouds or hazes, including what they are they made of.

“Clouds or haze being on almost all these planets is pretty surprising,” said Robert Zellem, a postdoctoral fellow at JPL and co-author of the study.

The implications of this result agree with findings published in the Dec. 14, 2015, issue of the journal Nature. The Nature study used data from NASA’s Hubble and Spitzer Space Telescopes to suggest that clouds or haze could be hiding undetected water in hot Jupiters. This new study uses exoplanet data from a single instrument on Hubble to uniformly characterize a larger group of hot Jupiters, and is the first to quantify how much of the atmosphere would be shielded as a result of clouds or haze.

The new research could have implications for follow-up studies with future space observatories, such as NASA’s James Webb Space Telescope. Exoplanets with thick cloud covers blocking the detection of water and other substances may be less desirable targets for more extensive study.

These results are also important for figuring out how planets form, scientists say.

“Did these planets form in their current positions or migrate toward their host stars from farther out? Understanding the abundances of molecules such as water helps us answer those questions,” Zellem said.

“This paper is an exciting step forward for the study of exoplanets and comparing their properties,” said Mark Swain, study co-author and group supervisor for the exoplanet discovery and science group at JPL.

Michael Line of the University of California, Santa Cruz, also contributed to the study. Other co-authors from JPL included Gael Roudier, Graca Rocha and John Livingston.

For more information about the Hubble Space Telescope, visit:

Popular Science: 400-Foot High Tsunami Waves Ravaged Ancient Mars

Posted on Updated on

Illustration by Alexis Rodriguez

By Mary Beth Griggs
Contributior, Popular Science

Over three billion years ago, Mars had water. A lot more water than it has now.

Oceans of water, in fact. In a study published in Scientific Reports today, researchers found evidence of two large tsunami deposits on Mars, probably caused by large meteorites slamming into the early Martian ocean.

In addition to a massive wave of water, tsunamis carry along huge amounts of debris, some of which can be swept inland and left far beyond the shorelines. In this case, the waves created by the impacts were likely almost 400 feet high, and travelled hundreds of miles inland, carrying debris and scarring the landscape.

The two tsunamis on Mars likely occurred about 3 million years apart, enough time for the Martian climate to cool considerably. During the icy conditions of the second tsunami, large chunks of ice were likely pushed along, carried away from the ocean and left on the dry, cold surface. Researchers hope that eventually, those deposits could be examined for signs of whether the waters of Mars once had life.

To read the rest of this article, please visit Popular Science: 400-Foot High Tsunami Waves Ravaged Ancient Mars



Saturn Moon’s Activity Could Be ‘Curtain Eruptions’

Posted on


Recent research suggests much of the eruption activity on the surface of Saturn’s moon Enceladus could be in the form of broad, curtain-like eruptions, rather than discrete jets. Image credit: NASA/JPL-Caltech/SSI/PSI

New research using data from NASA’s Cassini mission suggests most of the eruptions from Saturn’s moon Enceladus might be diffuse curtains rather than discrete jets. Many features that appear to be individual jets of material erupting along the length of prominent fractures in the moon’s south polar region might be phantoms created by an optical illusion, according to the new study.

The research is being published on Thursday, May 7, in the journal Nature.

“We think most of the observed activity represents curtain eruptions from the ‘tiger stripe’ fractures, rather than intermittent geysers along them,” said Joseph Spitale, lead author of the study and a participating scientist on the Cassini mission at the Planetary Science Institute in Tucson, Arizona. “Some prominent jets likely are what they appear to be, but most of the activity seen in the images can be explained without discrete jets.”

In analyzing Cassini’s images of the eruptions on Enceladus, Spitale and colleagues took particular note of the faint background glow present in most images. The brightest eruption features, which appear to be discrete jets, look to them to be superimposed intermittently upon this background structure.

The researchers modeled eruptions on Enceladus as uniform curtains along the tiger stripe fractures. They found that phantom brightness enhancements appear in places where the viewer is looking through a “fold” in the curtain. The folds exist because the fractures in Enceladus’ surface are more wavy than perfectly straight. The researchers think this optical illusion is responsible for most of what appear to be individual jets.

“The viewing direction plays an important role in where the phantom jets appear,” said Spitale. “If you rotated your perspective around Enceladus’ south pole, such jets would seem to appear and disappear.”

Phantom jets in simulated images produced by the scientists line up nicely with some of the features in real Cassini images that appear to be discrete columns of spray. The correspondence between simulation and spacecraft data suggests that much of the discrete-jet structure is an illusion, according to the researchers.

Curtain eruptions occur on Earth where molten rock, or magma, gushes out of a deep fracture. These eruptions, which often create spectacular curtains of fire, are seen in places such as Hawaii, Iceland and the Galapagos Islands.

“Our understanding of Enceladus continues to evolve, and we’ve come to expect surprises along the way,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California, who was not involved in the study. “This little ice world is becoming more exciting, not less, as we tease out new details about its subsurface ocean and astonishing geophysical activity.”

The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the mission for the agency’s Science Mission Directorate in Washington. The Cassini imaging operations center is based at the Space Science Institute in Boulder, Colorado.

For more information about Cassini, visit: and