Earth Sciences

NASA Study Solves Two Mysteries About Wobbling Earth

Posted on Updated on

 

Earth does not always spin on an axis running through its poles. Instead, it wobbles irregularly over time, drifting toward North America throughout most of the 20th Century (green arrow). That direction has changed drastically due to changes in water mass on Earth. Credit: NASA/JPL-Caltech


Using
satellite data on how water moves around Earth, NASA scientists have solved two mysteries about wobbles in the planet’s rotation — one new and one more than a century old. The research may help improve our knowledge of past and future climate. 

Although a desktop globe always spins smoothly around the axis running through its north and south poles, a real planet wobbles. Earth’s spin axis drifts slowly around the poles; the farthest away it has wobbled since observations began is 37 feet (12 meters). These wobbles don’t affect our daily life, but they must be taken into account to get accurate results from GPS, Earth-observing satellites and observatories on the ground. 

In a paper ‘Climate–Driven Polar Motion: 2003–2015 (PDF)‘ published today in Science Advances, Surendra Adhikari and Erik Ivins of NASA’s Jet Propulsion Laboratory, Pasadena, California, researched how the movement of water around the world contributes to Earth’s rotational wobbles. Earlier studies have pinpointed many connections between processes on Earth’s surface or interior and our planet’s wandering ways. For example, Earth’s mantle is still readjusting to the loss of ice on North America after the last ice age, and the reduced mass beneath that continent pulls the spin axis toward Canada at the rate of a few inches each year. But some motions are still puzzling.


A Sharp Turn To The East

Before about 2000, Earth’s spin axis was drifting toward Canada (green arrow, left globe). JPL scientists calculated the effect of changes in water mass in different regions (center globe) in pulling the direction of drift eastward and speeding the rate (right globe). Credit: NASA/JPL-Caltech

Around the year 2000, Earth’s spin axis took an abrupt turn toward the east and is now drifting almost twice as fast as before, at a rate of almost 7 inches (17 centimeters) a year. “It’s no longer moving toward Hudson Bay, but instead toward the British Isles,” said Adhikari. “That’s a massive swing.” Adhikari and Ivins set out to explain this unexpected change.

Scientists have suggested that the loss of mass from Greenland and Antarctica’s rapidly melting ice sheet could be causing the eastward shift of the spin axis. The JPL scientists assessed this idea using observations from the NASA/German Aerospace Center Gravity Recovery and Climate Experiment (GRACE) satellites, which provide a monthly record of changes in mass around Earth. Those changes are largely caused by movements of water through everyday processes such as accumulating snowpack and groundwater depletion. They calculated how much mass was involved in water cycling between Earth’s land areas and its oceans from 2003 to 2015, and the extent to which the mass losses and gains pulled and pushed on the spin axis.

Adhikari and Ivins’ calculations showed that the changes in Greenland alone do not generate the gigantic amount of energy needed to pull the spin axis as far as it has shifted. In the Southern Hemisphere, ice mass loss from West Antarctica is pulling, and ice mass gain in East Antarctica is pushing, Earth’s spin axis in the same direction that Greenland is pulling it from the north, but the combined effect is still not enough to explain the speedup and new direction. Something east of Greenland has to be exerting an additional pull.

The researchers found the answer in Eurasia. 

“The bulk of the answer is a deficit of water in Eurasia: the Indian subcontinent and the Caspian Sea area,” Adhikari said. 

The finding was a surprise. This region has lost water mass due to depletion of aquifers and drought, but the loss is nowhere near as great as the change in the ice sheets. 

So why did the smaller loss have such a strong effect? The researchers say:

“It’s because the spin axis is very sensitive to changes occurring around 45 degrees latitude, both north and south. “This is well explained in the theory of rotating objects,” Adhikari explained. “That’s why changes in the Indian subcontinent, for example, are so important.””


New Insight on an Old Wobble
In the process of solving this recent mystery, the researchers unexpectedly came up with a promising new solution to a very old

The relationship between continental water mass and the east-west wobble in Earth’s spin axis. Losses of water from Eurasia correspond to eastward swings in the general direction of the spin axis (top), and Eurasian gains push the spin axis westward (bottom). Credit: NASA/JPL-Caltech

problem, as well. One particular wobble in Earth’s rotation has perplexed scientists since observations began in 1899. Every six to 14 years, the spin axis wobbles about 20 to 60 inches (0.5 to 1.5 meters) either east or west of its general direction of drift. “Despite tremendous theoretical and modeling efforts, no plausible mechanism has been put forward that could explain this enigmatic oscillation,” Adhikari said.

Lining up a graph of the east-west wobble during the period when GRACE data were available against a graph of changes in continental water storage for the same period, the JPL scientists spotted a startling similarity between the two. Changes in polar ice appeared to have no relationship to the wobble — only changes in water on land. Dry years in Eurasia, for example, corresponded to eastward swings, while wet years corresponded to westward swings.

When the researchers input the GRACE observations on changes in land water mass from April 2002 to March 2015 into classic physics equations that predict pole positions, they found that the results matched the observed east-west wobble very closely. “This is much more than a simple correlation,” coauthor Ivins said. “We have isolated the cause.”

The discovery raises the possibility that the 115-year record of east-west wobbles in Earth’s spin axis may, in fact, be a remarkably good record of changes in land water storage. “That could tell us something about past climate — whether the intensity of drought or wetness has amplified over time, and in which locations,” said Adhikari. 

“Historical records of polar motion are both globally comprehensive in their sensitivity and extraordinarily accurate,” said Ivins. “Our study shows that this legacy data set can be used to leverage vital information about changes in continental water storage and ice sheets over time.”

GRACE is a joint NASA mission with the German Aerospace Center (DLR) and the German Research Center for Geosciences (GFZ), in partnership with the University of Texas at Austin. For more information on the mission, visit: http://grace.jpl.nasa.gov or http://www.csr.utexas.edu/grace

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth

Advertisements

NASA/Forest Service Maps Aid Fire Recovery

Posted on Updated on

The 2013 Rim fire in and near Yosemite National Park, California, was the third largest in the state’s history, burning more than 250,000 acres. Almost two years later, forest restoration efforts are still ongoing. Image credit: USFS/Mike McMillan

 Fast Facts:

  • New maps of burn areas from two California megafires are so detailed, they can show individual trees.
  • The maps are being used in rehabilitating the burn areas and protecting wildlife.

New maps of two recent California megafires that combine unique data sets from the U.S. Forest Service and NASA’s Jet Propulsion Laboratory in Pasadena, California, are answering some of the urgent questions that follow a huge wildfire: In all the acres of blackened landscape, where are the live trees to provide seed and regrow the forest? Which dead trees could endanger workers rebuilding roads and trails? What habitats have been created for fire-dependent wildlife species? 

The maps, so detailed that they show individual trees, cover the areas of two California megafires — the 2013 Rim fire, which burned more than 250,000 acres (1,000 square kilometers) near and in Yosemite National Park, and 2014’s very intense King fire near Lake Tahoe — before, during and after the active burns. As the Forest Service directs ongoing recovery and restoration projects in the two areas, it is using the maps to target its efforts toward important goals such as reducing soil erosion and protecting wildlife.

  

The maps include observations from three instruments: JPL’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which collects images in visible light; JPL’s MODIS/ASTER Airborne Simulator (MASTER), which observes in thermal infrared — in other words, it “sees” heat; and lidar data showing terrain and canopy with such high resolution that individual trees are outlined.

Carlos Ramirez, program manager of the USFS’s Remote Sensing Laboratory, McClellan, California, described three ways the Forest Service is currently using the maps:

— “In some areas of the King fire, you don’t see any green for miles and miles,” said Ramirez. “It’s likely there are not going to be any viable seed sources where the fire was that intense. With the AVIRIS data set, we get an inventory of living vegetation and the condition of it. That gives people in charge of putting together restoration plans an idea of where to focus their attention.”

— Wildfires increase erosion by burning off plants that stabilize soil and diffuse rain. Intense burns often create a water-resistant layer atop the soil so that rain runs off instead of soaking in, cutting deep channels and increasing flood and landslide danger downstream. The maps identify where trees and plants are still alive and erosion control is not needed. 

— Ramirez is working with the University of California, Davis, and nongovernmental organizations to manage the goals of simultaneously clearing hazardous burned timber and preserving habitats for as many species as possible. “Some of these high-severity burn patches are highly desirable habitats,” he said. The maps allow the team to better assess habitat quality for species such as the black-backed woodpecker, which thrives on beetles that live in dead trees.

 

These before-and-after lidar images from the King fire show an area on the west side of the Rubicon River where fire damage was severe. Blue is ground level; lighter colors are higher. A road, bordered by dense trees in the before image, and part of a bridge (green) are at center. Image credit: USFS
 

The NASA observations were acquired in the development of a satellite mission called the Hyperspectral Infrared Imager (HyspIRI), which will study Earth’s ecosystems and provide critical information on natural disasters. HyspIRI is many years from launch and not yet under construction, but AVIRIS and MASTER are airborne prototypes of its two instruments, developed so that scientists can work out scientific and technological issues in advance. Natasha Stavros of JPL recognized the potential value of the Rim fire observations and began collaborating with Ramirez to assemble the maps. When the King fire broke out, the scientists received additional NASA funding to document that fire and its aftermath as well. They hope to create another set of maps if another California megafire breaks out in 2015.

Scientist Janice Coen of the National Center for Atmospheric Research, Boulder, Colorado, is using the MASTER maps of the King fire in independent research with the Coupled Atmosphere – Wildland Fire Environment model, which simulates the interactions of weather and fires. She hopes to gain insight into why the fire grew so quickly. Fires that intense usually are fanned by high winds, but weather stations around the King fire recorded very little wind when it started. “If you’re using the standard tools, you can’t explain the rapid fire growth,” she said. “The evolution of this fire seems to depend very much on winds the fire itself generated as it burned, and those winds in turn depend on the characteristics of the vegetation the fire had for fuel. It’s a good case study, because the new data sets can distinguish between vegetation characteristics that other data sets don’t distinguish.”

A database of detailed maps is online at: http://wildfire.jpl.nasa.gov/data 

It’s the Final Act for Larsen B Ice Shelf, NASA Finds

Posted on Updated on

 

Antarctica’s Larsen B Ice Shelf is likely to shatter into hundreds of icebergs like this one before the end of the decade, according to a new NASA study. Image credit: NSIDC/Ted Scambos

A new NASA study finds the last remaining section of Antarctica’s Larsen B Ice Shelf, which partially collapsed in 2002, is quickly weakening and is likely to disintegrate completely before the end of the decade.

A team led by Ala Khazendar of NASA’s Jet Propulsion Laboratory in Pasadena, California, found the remnant of the Larsen B Ice Shelf is flowing faster, becoming increasingly fragmented and developing large cracks. Two of its tributary glaciers also are flowing faster and thinning rapidly.

“These are warning signs that the remnant is disintegrating,” Khazendar said. “Although it’s fascinating scientifically to have a front-row seat to watch the ice shelf becoming unstable and breaking up, it’s bad news for our planet. This ice shelf has existed for at least 10,000 years, and soon it will be gone.”

Ice shelves are the gatekeepers for glaciers flowing from Antarctica toward the ocean. Without them, glacial ice enters the ocean faster and accelerates the pace of global sea level rise. This study, the first to look comprehensively at the health of the Larsen B remnant and the glaciers that flow into it, has been published online in the journal Earth and Planetary Science Letters.

Khazendar’s team used data on ice surface elevations and bedrock depths from instrumented aircraft participating in NASA’s Operation IceBridge, a multiyear airborne survey campaign that provides unprecedented documentation annually of Antarctica’s glaciers, ice shelves and ice sheets. Data on flow speeds came from spaceborne synthetic aperture radars operating since 1997.

http://www.jpl.nasa.gov/video/download.php?id=1376&download=hdmov

Khazendar noted his estimate of the remnant’s remaining life span was based on the likely scenario that a huge, widening rift that has formed near the ice shelf’s grounding line will eventually crack all the way across. The free-floating remnant will shatter into hundreds of icebergs that will drift away, and the glaciers will rev up for their unhindered move to the sea.

Located on the coast of the Antarctic Peninsula, the Larsen B remnant is about 625 square miles (1,600 square kilometers) in area and about 1,640 feet (500 meters) thick at its thickest point. Its three major tributary glaciers are fed by their own tributaries farther inland. 

“What is really surprising about Larsen B is how quickly the changes are taking place,” Khazendar said. “Change has been relentless.”

The remnant’s main tributary glaciers are named Leppard, Flask and Starbuck — the latter two after characters in the novel Moby Dick. The glaciers’ thicknesses and flow speeds changed only slightly in the first couple of years following the 2002 collapse, leading researchers to assume they remained stable. The new study revealed, however, that Leppard and Flask glaciers have thinned by 65-72 feet (20-22 meters) and accelerated considerably in the intervening years. The fastest-moving part of Flask Glacier had accelerated 36 percent by 2012 to a flow speed of 2,300 feet (700 meters) a year — comparable to a car accelerating from 55 to 75 mph.

Flask’s acceleration, while the remnant has been weakening, may be just a preview of what will happen when the remnant breaks up completely. After the 2002 Larsen B collapse, the glaciers behind the collapsed part of the shelf accelerated as much as eightfold — comparable to a car accelerating from 55 to 440 mph.

The third and smallest glacier, Starbuck, has changed little. Starbuck’s channel is narrow compared with those of the other glaciers, and the small glacier is strongly anchored to the bedrock, which, according to authors of the study, explains its comparative stability.

“This study of the Antarctic Peninsula glaciers provides insights about how ice shelves farther south, which hold much more land ice, will react to a warming climate,” said JPL glaciologist Eric Rignot, a coauthor of the paper.

The research team included scientists from JPL; the University of California, Irvine; and the University Centre in Svalbard, Norway. The paper is online at: http://go.nasa.gov/1bbpfsC.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth.

Let It Go! SMAP Almost Ready to Map Frozen Soil

Posted on Updated on

SMAP will monitor the frozen or thawed state of the global landscape north of 45 degrees north latitude.
SMAP will monitor the frozen or thawed state of the global landscape north of 45 degrees north latitude. Image credit: UCAR/Carlye Calvin

Those who feel as though they’ve been living in the never-ending winter of the movie “Frozen” this year may be glad to hear that the spring thaw is now typically arriving up to two weeks earlier in the Northern Hemisphere than it did 20 to 30 years ago. But the changing date of the spring thaw has consequences far beyond reducing the number of mornings when you have to scrape off your windshield.

One ecosystem where scientists would most like to understand the effects of changing freeze/thaw cycles is boreal forests, the great ring of green covering the land nearest the North Pole. The forests of Alaska, Canada, Scandinavia and Siberia cover almost 15 percent of Earth’s land surface. The Arctic is warming more quickly than lower latitudes, and the way these forests respond to this rapid change could provide valuable clues about our planet’s warmer future.

But we know very little about how the boreal forests are changing. Millions of square miles have no roads or even villages. “What we have now are very sparse, seasonal measurements from the ground,” said John Kimball, a professor of systems ecology at the University of Montana, Missoula, and a member of the science team for NASA’s Soil Moisture Active Passive (SMAP) mission, launched Jan. 31. “We do have long-term, global satellite data sets that are sensitive to freeze-thaw, but they tend to be very coarse.” That means each measurement averages the status of a large area. Like a mosaic made of large tiles, these data cannot show much detail.

That’s about to change. By the end of April, SMAP will begin monitoring the frozen or thawed state of the landscape north of 45 degrees north latitude (about the latitude of Minneapolis) every two days. The primary mission of SMAP is to measure the amount of moisture in the top few inches of soil globally, but it also detects whether that moisture is frozen or in liquid form. SMAP’s radar measurements, with “tiles” only half a mile to a mile and a half (1 to 3 kilometers) across, will reveal far more detail than scientists now have about the freeze/thaw status of the land surface.

Why is greater detail needed? In the Arctic, the timing of the spring thaw can vary considerably within a small area. Because the returning sun is low on the horizon, the shadowed north side of a hill may remain icy many days after plants have started growing again on the sunlit south side. Those early spring weeks are critical in the short Arctic growing season. “Once the vegetation thaws, boom! Photosynthesis takes off,” Kimball explained. “You can get your highest rates of photosynthesis within a few weeks after the thaw, and a later thaw can mean much lower vegetation growth for the season. We need observations at what I call the landscape level to more precisely monitor those patterns and changes.”

During photosynthesis, plants absorb carbon dioxide from the air. The carbon stays in their wood, roots and leaves, and when they die, most of it remains in the soil. That makes undisturbed forests what scientists call carbon sinks — places that remove carbon from the atmosphere. Longer unfrozen seasons in the Arctic give forests more time to grow and spread, increasing the extent of the carbon sink.

On the other hand, climate warming has increased the occurrence of droughts and wildfires in the Arctic. A burning forest spews enormous amounts of carbon into the atmosphere; in scientific terms, it is a carbon source. Thus, global climate change is causing the northern forests both to absorb and to release more carbon.

With so little Arctic data to crunch, models of Arctic land processes do not agree on which of these trends is prevailing, much less what the future could hold. Lack of consensus does not indicate fundamental disagreements on the physical processes involved, according to JPL scientist Josh Fisher, a member of the SMAP algorithm team. The problem is that, at present, if you put the Arctic’s emitted carbon on one side of a scale and absorbed carbon on the other, the scales would almost balance. “The source/sink balance is usually close to zero, and it’s very easy to get on the wrong side of the zero,” he said. Yet the wrong answer on this fundamental question can cascade into a chain of wrong answers in the course of a model simulation. SMAP’s fine-scale observations have the potential to improve modelers’ understanding of both today’s situation and how it may change in the future.

This spring, SMAP will spin up in time to track the spring thaw in the boreal forest with the detail scientists need — as Princess Anna in “Frozen” says, “For the first time in forever.”

For more about SMAP, visit:

http://smap.jpl.nasa.gov/

JPL is managed for NASA by the California Institute of Technology in Pasadena.

U-Texas & NASA: Study Sees New Threat to East Antarctic Ice

Posted on Updated on

IMG_3677
This is the East Antarctic coastline. Icebergs are highlighted by the sunlight, and the open ocean appears black. Image credit: NASA

Researchers at the University of Texas at Austin, NASA and other research organizations have discovered two seafloor troughs that could allow warm ocean water to reach the base of Totten Glacier, East Antarctica’s largest and most rapidly thinning glacier. The discovery likely explains the glacier’s extreme thinning and raises concern about its impact on sea level rise.

The result, published in the journal Nature Geoscience today, March 16, has global implications because the ice flowing through Totten Glacier alone is equivalent to the entire volume of the more widely studied West Antarctic Ice Sheet. If Totten Glacier were to collapse completely, global sea levels would rise by at least 11 feet (3.3 meters). As in the West Antarctic Ice Sheet, complete collapse of Totten Glacier may take centuries, although the timing of retreat in both places is the subject of intensive research.

This image shows the previously unknown landscape beneath Totten Glacier. Orange arrows point to seafloor troughs deep enough to allow warm water to enter beneath the floating ice. Image credit: UTA/Jamin Greenbaum
This image shows the previously unknown landscape beneath Totten Glacier. Orange arrows point to seafloor troughs deep enough to allow warm water to enter beneath the floating ice. Image credit: UTA/Jamin Greenbaum

East Antarctica has appeared to be stable compared with the rapidly melting western side of the continent. The new finding shows that “Totten Glacier and the East Antarctic Ice Sheet are a much more interesting and dynamic part of the sea level rise story than we’d previously thought,” said co-author Dustin Schroeder, a scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California. Schroeder helped analyze data from an ice-penetrating radar to demonstrate that ocean water could access the glacier through the newfound troughs.

In some areas of the ocean surrounding Antarctica, warm water can be found below cooler water because it is saltier, and therefore heavier, than the shallower water. Seafloor valleys that connect this deep warm water to the coast can especially compromise glaciers, but this process had previously been seen only under the West Antarctic Ice Sheet. Deep warm water had been observed seaward of Totten Glacier, but there was no evidence that it could compromise coastal ice.

The newly discovered troughs are deep enough to give the deep warm water access to the huge cavity under the glacier. The deeper of the two troughs extends from the ocean to the underside of Totten Glacier in an area not previously known to be floating.

The data for this study were gathered as part of the International Collaboration for Exploration of the

The Totten Glacier Catchment (outlined in blue) is a collection basin for ice and snow that flows into the ocean through Totten Glacier alone. The catchment is estimated to contain enough frozen water to raise global sea level by at least 11 feet (3.3 meters). Image credit: Australian Antarctic Division
The Totten Glacier Catchment (outlined in blue) is a collection basin for ice and snow that flows into the ocean through Totten Glacier alone. The catchment is estimated to contain enough frozen water to raise global sea level by at least 11 feet (3.3 meters). Image credit: Australian Antarctic Division

Cryosphere through Airborne Profiling (ICECAP) project, which, together with the East Antarctic component of NASA’s Operation IceBridge mission, made the first comprehensive survey of the Totten Glacier Ice Shelf and nearby regions between 2008 and 2012. Other coauthors of the study come from research organizations and universities in Australia, France and England.

For more information on the new study, see:

http://www.jsg.utexas.edu/news/2015/03/east-antarctica-melting-could-be-explained-by-oceanic-gateways

To learn more about Operation IceBridge and ICECAP, visit:

http://www.nasa.gov/mission_pages/icebridge/

and

http://www.ig.utexas.edu/research/projects/icecap/

The paper is available at:

http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2388.html

Technology Innovations Spin NASA’s SMAP into Space

Posted on Updated on

It’s active. It’s passive. And it’s got a big, spinning lasso.

Scheduled for launch on Jan. 29, 2015, NASA’s Soil Moisture Active Passive (SMAP) instrument will measure the moisture lodged in Earth’s soils with an unprecedented accuracy and resolution. The instrument’s three main parts are a radar, a radiometer and the largest rotating mesh antenna ever deployed in space.

Remote sensing instruments are called “active” when they emit their own signals and “passive” when they record signals that already exist. The mission’s science instrument ropes together a sensor of each type to corral the highest-resolution, most accurate measurements ever made of soil moisture — a tiny fraction of Earth’s water that has a disproportionately large effect on weather and agriculture.

To enable the mission to meet its accuracy needs while covering the globe every three days or less, SMAP engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, designed and built the largest rotating antenna that could be stowed into a space of only one foot by four feet (30 by 120 centimeters) for launch. The dish is 19.7 feet (6 meters) in diameter.

“We call it the spinning lasso,” said Wendy Edelstein of NASA’s Jet Propulsion Laboratory, Pasadena, California, the SMAP instrument manager.

Like the cowboy’s lariat, the antenna is attached on one side to an arm with a crook in its elbow. It spins around the arm at about 14 revolutions per minute (one complete rotation every four seconds). The antenna dish was provided by Northrop Grumman Astro Aerospace in Carpinteria, California. The motor that spins the antenna was provided by the Boeing Company in El Segundo, California.

“The antenna caused us a lot of angst, no doubt about it,” Edelstein noted. Although the antenna must fit during launch into a space not much bigger than a tall kitchen trash can, it must unfold so precisely that the surface shape of the mesh is accurate within about an eighth of an inch (a few millimeters).

The mesh dish is edged with a ring of lightweight graphite supports that stretch apart like a baby gate when a single cable is pulled, drawing the mesh outward. “Making sure we don’t have snags, that the mesh doesn’t hang up on the supports and tear when it’s deploying — all of that requires very careful engineering,” Edelstein said. “We test, and we test, and we test some more. We have a very stable and robust system now.”

SMAP’s radar, developed and built at JPL, uses the antenna to transmit microwaves toward Earth and receive the signals that bounce back, called backscatter. The microwaves penetrate a few inches or more into the soil before they rebound. Changes in the electrical properties of the returning microwaves indicate changes in soil moisture, and also tell whether or not the soil is frozen. Using a complex technique called synthetic aperture radar processing, the radar can produce ultra-sharp images with a resolution of about half a mile to a mile and a half (one to three kilometers).

SMAP’s radiometer detects differences in Earth’s natural emissions of microwaves that are caused by water in soil. To address a problem that has seriously hampered earlier missions using this kind of instrument to study soil moisture, the radiometer designers at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, developed and built one of the most sophisticated signal-processing systems ever created for such a scientific instrument.

The problem is radio frequency interference. The microwave wavelengths that SMAP uses are officially reserved for scientific use, but signals at nearby wavelengths that are used for air traffic control, cell phones and other purposes spill over into SMAP’s wavelengths unpredictably. Conventional signal processing averages data over a long time period, which means that even a short burst of interference skews the record for that whole period. The Goddard engineers devised a new way to delete only the small segments of actual interference, leaving much more of the observations untouched.

Combining the radar and radiometer signals allows scientists to take advantage of the strengths of both technologies while working around their weaknesses. “The radiometer provides more accurate soil moisture but a coarse resolution of about 40 kilometers [25 miles] across,” said JPL’s Eni Njoku, a research scientist with SMAP. “With the radar, you can create very high resolution, but it’s less accurate. To get both an accurate and a high-resolution measurement, we process the two signals together.”

SMAP will be the fifth NASA Earth science mission launched within the last 12 months.

For more about the SMAP mission, visit:

http://www.nasa.gov/smap/

NASA monitors Earth’s vital signs from space, air and land with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

For more information about NASA’s Earth science activities this year, visit:

http://www.nasa.gov/earthrightnow

Media Contact

Alan Buis
Jet Propulsion Laboratory, Pasadena, California
818-354-0474
Alan.Buis@jpl.nasa.gov

Written by Carol Rasmussen
NASA Earth Science News Team

2014-444

NASA Finds Good News on Forests and Carbon Dioxide

Posted on Updated on

A new NASA study suggests that tropical forests, like this one in Malaysia, absorb more atmospheric carbon dioxide than is absorbed by forests in Alaska, Canada and Siberia. (Image credit: Wikimedia Commons)
A new NASA study suggests that tropical forests, like this one in Malaysia, absorb more atmospheric carbon dioxide than is absorbed by forests in Alaska, Canada and Siberia. (Image credit: Wikimedia Commons)

PRESS RELEASE (NASA/JPL) – A new NASA-led study shows that tropical forests may be absorbing far more carbon dioxide than many scientists thought, in response to rising atmospheric levels of the greenhouse gas. The study estimates that tropical forests absorb 1.4 billion metric tons of carbon dioxide out of a total global absorption of 2.5 billion — more than is absorbed by forests in Canada, Siberia and other northern regions, called boreal forests.

“This is good news, because uptake in boreal forests is already slowing, while tropical forests may continue to take up carbon for many years,” said David Schimel of NASA’s Jet Propulsion Laboratory, Pasadena, California. Schimel is lead author of a paper on the new research, appearing online today in the Proceedings of National Academy of Sciences.

Forests and other land vegetation currently remove up to 30 percent of human carbon dioxide emissions from the atmosphere during photosynthesis. If the rate of absorption were to slow down, the rate of global warming would speed up in return.

The new study is the first to devise a way to make apples-to-apples comparisons of carbon dioxide estimates from many sources at different scales: computer models of ecosystem processes, atmospheric models run backward in time to deduce the sources of today’s concentrations (called inverse models), satellite images, data from experimental forest plots and more. The researchers reconciled all types of analyses and assessed the accuracy of the results based on how well they reproduced independent, ground-based measurements. They obtained their new estimate of the tropical carbon absorption from the models they determined to be the most trusted and verified.

“Until our analysis, no one had successfully completed a global reconciliation of information about carbon dioxide effects from the atmospheric, forestry and modeling communities,” said co-author Joshua Fisher of JPL. “It is incredible that all these different types of independent data sources start to converge on an answer.”

The question of which type of forest is the bigger carbon absorber “is not just an accounting curiosity,” said co-author Britton Stephens of the National Center for Atmospheric Research, Boulder, Colorado. “It has big implications for our understanding of whether global terrestrial ecosystems might continue to offset our carbon dioxide emissions or might begin to exacerbate climate change.”

As human-caused emissions add more carbon dioxide to the atmosphere, forests worldwide are using it to grow faster, reducing the amount that stays airborne. This effect is called carbon fertilization. “All else being equal, the effect is stronger at higher temperatures, meaning it will be higher in the tropics than in the boreal forests,” Schimel said.

But climate change also decreases water availability in some regions and makes Earth warmer, leading to more frequent and larger wildfires. In the tropics, humans compound the problem by burning wood during deforestation. Fires don’t just stop carbon absorption by killing trees, they also spew huge amounts of carbon into the atmosphere as the wood burns.

For about 25 years, most computer climate models have been showing that mid-latitude forests in the Northern Hemisphere absorb more carbon than tropical forests. That result was initially based on the then-current understanding of global air flows and limited data suggesting that deforestation was causing tropical forests to release more carbon dioxide than they were absorbing.

In the mid-2000s, Stephens used measurements of carbon dioxide made from aircraft to show that many climate models were not correctly representing flows of carbon above ground level. Models that matched the aircraft measurements better showed more carbon absorption in the tropical forests. However, there were still not enough global data sets to validate the idea of a large tropical-forest absorption. Schimel said that their new study took advantage of a great deal of work other scientists have done since Stephens’ paper to pull together national and regional data of various kinds into robust, global data sets.

Schimel noted that their paper reconciles results at every scale from the pores of a single leaf, where photosynthesis takes place, to the whole Earth, as air moves carbon dioxide around the globe. “What we’ve had up till this paper was a theory of carbon dioxide fertilization based on phenomena at the microscopic scale and observations at the global scale that appeared to contradict those phenomena. Here, at least, is a hypothesis that provides a consistent explanation that includes both how we know photosynthesis works and what’s happening at the planetary scale.”

NASA monitors Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

For more information about NASA’s Earth science activities in the last year, visit:

http://www.nasa.gov/earthrightnow

Media Contact

Alan Buis
Jet Propulsion Laboratory, Pasadena, California
818-354-0474
Alan.Buis@jpl.nasa.gov

Written by Carol Rasmussen
NASA Earth Science News Team

2014-442