Dwarf Planet Ceres

JPL News – Day in Review

Posted on Updated on

This image from NASA’s Dawn spacecraft shows Kupalo Crater, one of the youngest craters on Ceres. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA 


Features on dwarf planet Ceres that piqued the interest of scientists throughout 2015 stand out in exquisite detail in the latest images from NASA’s Dawn spacecraft, which recently reached its lowest-ever altitude at Ceres.

Dawn took these images near its current altitude of 240 miles (385 kilometers) from Ceres, between Dec. 19 and 23, 2015.

Kupalo Crater, one of the youngest craters on Ceres, shows off many fascinating attributes at the high image resolution of 120 feet (35 meters) per pixel. The crater has bright material exposed on its rim, which could be salts, and its flat floor likely formed from impact melt and debris. Researchers will be looking closely at whether this material is related to the “bright spots” of Occator Crater. Kupalo, which measures 16 miles (26 kilometers) across and is located at southern mid-latitudes, is named for the Slavic god of vegetation and harvest.

“This crater and its recently-formed deposits will be a prime target of study for the team as Dawn continues to explore Ceres in its final mapping phase,” said Paul Schenk, a Dawn science team member at the Lunar and Planetary Institute, Houston.

The fractured floor of Dantu Crater on Ceres is seen in this image from NASA’s Dawn spacecraft. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn’s low vantage point also captured the dense network of fractures on the floor of 78-mile-wide (126-kilometer-wide) Dantu Crater. One of the youngest large craters on Earth’s moon, called Tycho, has similar fractures. This cracking may have resulted from the cooling of impact melt, or when the crater floor was uplifted after the crater formed.

A 20-mile (32-kilometer) crater west of Dantu is covered in steep slopes, called scarps, and ridges. These features likely formed when the crater partly collapsed during the formation process. The curvilinear nature of the scarps resembles those on the floor of Rheasilvia, the giant impact crater on protoplanet Vesta, which Dawn orbited from 2011 to 2012.

Dawn’s other instruments also began studying Ceres intensively in mid-December. The

NASA’s Dawn spacecraft viewed this Cerean crater, which is covered in ridges and steep slopes, called scarps on Dec. 23, 2015. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

visible and infrared mapping spectrometer is examining how various wavelengths of light are reflected by Ceres, which will help identify minerals present on its surface.

Dawn’s gamma ray and neutron detector (GRaND) is also keeping scientists busy. Data from GRaND help researchers understand the abundances of elements in Ceres’ surface, along with details of the dwarf planet’s composition that hold important clues about how it evolved.

The spacecraft will remain at its current altitude for the rest of its mission, and indefinitely afterward. The end of the prime mission will be June 30, 2016.

“When we set sail for Ceres upon completing our Vesta exploration, we expected to be surprised by what we found on our next stop. Ceres did not disappoint,” said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. “Everywhere we look in these new low- altitude observations, we see amazing landforms that speak to the unique character of this most amazing world.”

Dawn is the first mission to visit a dwarf planet, and the first mission outside the Earth-moon system to orbit two distinct solar system targets. After orbiting Vesta for 14 months in 2011 and 2012, it arrived at Ceres on March 6, 2015.

Dawn’s mission is managed by the Jet Propulsion Laboratory for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit: http://dawn.jpl.nasa.gov/mission

More information about Dawn is available at the following sites: http://dawn.jpl.nasa.gov and http://www.nasa.gov/dawn

 

 

 

 

Advertisements

Dawn’s Ceres Color Map Reveals Surface Diversity

Posted on

 

Dawn’s First Color Map of Ceres Dawn VIR Images of Ceres This map-projected view of Ceres was created from images taken by NASA’s Dawn spacecraft during its initial approach to the dwarf planet, prior to being captured into orbit in March 2015. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
 


A new color map of dwarf planet Ceres, which NASA’s Dawn spacecraft has been orbiting since March, reveals the diversity of the surface of this planetary body. Differences in morphology and color across the surface suggest Ceres was once an active body, Dawn researchers said today at the 2015 General Assembly of the European Geosciences Union in Vienna. 

“This dwarf planet was not just an inert rock throughout its history. It was active, with processes that resulted in different materials in different regions. We are beginning to capture that diversity in our color images,” said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. 

The Dawn mission made history on March 6 as the first spacecraft to reach a dwarf planet, and the first spacecraft to orbit two extraterrestrial targets. Previously, Dawn studied giant asteroid Vesta from 2011 to 2012, uncovering numerous insights about its geology and history. While Vesta is a dry body, Ceres is believed to be 25 percent water ice by mass. By comparing Vesta and Ceres, scientists hope to gain a better understanding of the formation of the solar system. 

Ceres’ surface is heavily cratered, as expected, but appears to have fewer large craters than scientists anticipated. It also has a pair of very bright neighboring spots in its northern hemisphere. More detail will emerge after the spacecraft begins its first intensive science phase on April 23, from a distance of 8,400 miles (13,500 kilometers) from the surface, said Martin Hoffmann, investigator on the Dawn framing camera team, based at the Max Planck Institute for Solar System Research, Göttingen, Germany. 

The visible and infrared mapping spectrometer (VIR), an imaging spectrometer that examines Ceres in visible and infrared light, has been examining the relative temperatures of features on Ceres’ surface. Preliminary examination suggests that different bright regions on Ceres’ surface behave differently, said Federico Tosi, investigator from the VIR instrument team at the Institute for Space Astrophysics and Planetology, and the Italian National Institute for Astrophysics, Rome. 

Based on observations from NASA’s Hubble Space Telescope, planetary scientists have identified 10 bright regions on Ceres’ surface. One pair of bright spots, by far the brightest visible marks on Ceres, appears to be located in a region that is similar in temperature to its surroundings. But a different bright feature corresponds to a region that is cooler than the rest of Ceres’ surface. 

The origins of Ceres’ bright spots, which have captivated the attention of scientists and the public alike, remain unknown. It appears the brightest pair is located in a crater 57 miles (92 kilometers) wide. As Dawn gets closer to the surface of Ceres, better-resolution images will become available.

“The bright spots continue to fascinate the science team, but we will have to wait until we get closer and are able to resolve them before we can determine their source,” Russell said. 

Both Vesta and Ceres are located in the main asteroid belt between Mars and Jupiter. The Dawn spacecraft will continue studying Ceres through June 2016. 

Dawn’s mission is managed by NASA’s Jet Propulsion Laboratory, Pasadena, California, for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit: 

http://dawn.jpl.nasa.gov/mission/

For more information about Dawn, visit:

http://dawn.jpl.nasa.gov

NASA-funded Study Explains Saturn’s Epic Tantrums

Posted on

This series of images from NASA’s Cassini spacecraft shows the development of a huge storm of the type that erupts about every 30 years on Saturn. Credit: NASA/JPL-Caltech/SSI

The long-standing mystery of why Saturn seethes with enormous storms every 30 years may have been solved by scientists working with data from NASA’s Cassini mission. The tempests, which can grow into bright bands that encircle the entire planet, are on a natural timer that is reset by each subsequent storm, the researchers report.

In 140 years of telescope observations, great storms have erupted on Saturn six times. Cassini and observers on Earth tracked the most recent of these storms from December 2010 to August 2011. During that time, the storm exploded through the clouds, eventually winding its way around Saturn.

In a paper published online today in the journal Nature Geoscience, scientists describe the effect they believe is responsible for the periodic outbursts. The basic idea is that water vapor is heavier than the hydrogen and helium that make up the bulk of Saturn’s atmosphere, so once each giant storm dumps its huge mass of rain, the air within the clouds is left lighter than the atmosphere below. For a time, this situation shuts off the process of convection — in which warm, moist air rises, and cool, dense air sinks — that creates new clouds and storms.

“For decades after one of these storms, the warm air in Saturn’s deep atmosphere is too wet, and too dense, to rise,” said Cheng Li, a graduate student at the California Institute of Technology in Pasadena, who led the study. “The air above has to cool off, radiating its heat to space, before its density is greater than that of the hot, wet air below. This cooling process takes about 30 years, and then come the storms.”

Li thinks the episodic nature of the storms indicates Saturn’s deep atmosphere contains more water, relative to the other atmospheric constituents, than Jupiter. The researchers suggest Saturn’s extra-wet interior might explain why the planet has such epic tantrums, whereas Jupiter does not. If Saturn’s deep atmosphere were drier, scientists would expect continuous, smaller storms, as observed on Jupiter, Li said. Instead, Saturn’s outbursts are episodic and quite explosive.

Other observations by ground and space-based telescopes have hinted at a wet interior for Saturn. “Previous studies using spectroscopy have shown that Saturn’s interior is enriched in methane and other volatiles, by two or three times, compared to Jupiter. From there, it’s a short leap to expect that Saturn is also rich in oxygen, which is also a volatile and a big part of every H2O molecule,” said Andrew Ingersoll, a member of the Cassini science team, also at Caltech, who co-authored the paper with Li. Volatiles are elements and chemical compounds that change from solid to liquid or gas at relatively low temperatures.

Scientists are interested in understanding the amount of oxygen and other volatile ingredients in Saturn and Jupiter. These ingredients provide important clues about the formation of the two planets — which are thought to have formed before all the others — and conditions in the early solar system.

The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. JPL, a division of Caltech, manages the mission for NASA’s Science Mission Directorate in Washington. 

For previous news and images related to Saturn’s giant storm:

http://go.nasa.gov/1H89e3p

For more information about Cassini, visit:

http://www.nasa.gov/cassini

http://saturn.jpl.nasa.gov

 

Dawn in Excellent Shape One Month After Ceres Arrival

Posted on

Artist’s concept of Dawn above Ceres around the time it was captured into orbit by the dwarf planet in early March. Since its arrival, the spacecraft turned around to point the blue glow of its ion engine in the opposite direction. Image credit: NASA/JPL

Since its capture by the gravity of dwarf planet Ceres on March 6, NASA’s Dawn spacecraft has performed flawlessly, continuing to thrust with its ion engine as planned. The thrust, combined with Ceres’ gravity, is gradually guiding the spacecraft into a circular orbit around the dwarf planet. All of the spacecraft’s systems and instruments are in excellent health.

Dawn has been following its planned trajectory on the dark side of Ceres — the side facing away from the sun — since early March. After it entered orbit, the spacecraft’s momentum carried it to a higher altitude, reaching a maximum of 46,800 miles (75,400 kilometers) on March 18. Today, Dawn is about 26,000 miles (42,000 kilometers) above Ceres, descending toward the first planned science orbit, which will be 8,400 miles (13,500 kilometers) above the surface.

The next optical navigation images of Ceres will be taken on April 10 and April 14, and are expected to be available online after initial analysis by the science team. In the first of these, the dwarf planet will appear as a thin crescent, much like the images taken on March 1, but with about 1.5 times higher resolution. The April 14 images will reveal a slightly larger crescent in even greater detail. Once Dawn settles into the first science orbit on April 23, the spacecraft will begin the intensive prime science campaign.

By early May, images will improve our view of the entire surface, including the mysterious bright spots that have captured the imaginations of scientists and space enthusiasts alike. What these reflections of sunlight represent is still unknown, but closer views should help determine their nature. The regions containing the bright spots will likely not be in view for the April 10 images; it is not yet certain whether they will be in view for the April 14 set.

On May 9, Dawn will complete its first Ceres science phase and begin to spiral down to a lower orbit to observe Ceres from a closer vantage point. 

Dawn previously explored the giant asteroid Vesta for 14 months, from 2011 to 2012, capturing detailed images and data about that body.

Dawn’s mission is managed by NASA’s Jet Propulsion Laboratory, Pasadena, California, for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft.

The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit: http://dawn.jpl.nasa.gov/mission

More details about Dawn’s trajectory are available at: http://dawnblog.jpl.nasa.gov

More information about Dawn is online at: http://dawn.jpl.nasa.gov 

NASA Spacecraft Becomes First to Orbit a Dwarf Planet

Posted on Updated on

NASA Spacecraft Becomes First to Orbit a Dwarf Planet

Latest News From NASA’s Jet Propulsion Laboratory

NASA’s Dawn spacecraft has become the first mission to achieve orbit around a dwarf planet. The spacecraft was approximately 38,000 miles (61,000) kilometers from Ceres when it was captured by the dwarf planet’s gravity at about 4:39 a.m. PST (7:39 a.m. EST) Friday.Mission controllers at NASA’s Jet Propulsion Laboratory in Pasadena, California received a signal from the spacecraft at 5:36 a.m. PST (8:36 a.m. EST) that Dawn was healthy and thrusting with its ion engine, the indicator Dawn had entered orbit as planned.

“Since its discovery in 1801, Ceres was known as a planet, then an asteroid and later a dwarf planet,” said Marc Rayman, Dawn chief engineer and mission director at JPL. “Now, after a journey of 3.1 billion miles (4.9 billion kilometers) and 7.5 years, Dawn calls Ceres, home.”

In addition to being the first spacecraft to visit a dwarf planet, Dawn also has the distinction of being the first mission to orbit two extraterrestrial targets. From 2011 to 2012, the space-craft explored the giant asteroid Vesta, delivering new insights and thousands of images from that distant world. Ceres and Vesta are the two most massive residents of our solar system’s main asteroid belt between Mars and Jupiter.

The most recent images received from the spacecraft, taken on March 1, show Ceres as a crescent, mostly in shadow because the spacecraft’s trajectory put it on a side of Ceres that faces away from the sun until mid-April. When Dawn emerges from Ceres’ dark side, it will deliver ever-sharper images as it spirals to lower orbits around the planet.

“We feel exhilarated,” said Chris Russell, principal investigator of the Dawn mission at the University of California, Los Angeles (UCLA). “We have much to do over the next year and a half, but we are now on station with ample reserves, and a robust plan to obtain our science objectives.”

Dawn’s mission is managed by JPL for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.

For a complete list of mission participants, visit:

http://dawn.jpl.nasa.gov/mission

For more information about Dawn, visit:

http://www.nasa.gov/dawn

track.php?msgid=155012&act=2FIS&r=17340975&c=1389932