Infrared Study Deep Space Objects

What Uranus Cloud Tops Have in Common With Rotten Eggs

Posted on Updated on

 

Uranus
Arriving at Uranus in 1986, Voyager 2 observed a bluish orb with extremely subtle features. A haze layer hid most of the planet’s cloud features from view. Credit: NASA/JPL-Caltech

  

Even after decades of observations and a visit by NASA’s Voyager 2 spacecraft, Uranus held on to one critical secret — the composition of its clouds. Now, one of the key components of the planet’s clouds has finally been verified. 

A global research team that includes Glenn Orton of NASA’s Jet Propulsion Laboratory in Pasadena, California, has spectroscopically dissected the infrared light from Uranus captured by the 26.25-foot (8-meter) Gemini North telescope on Hawaii’s Mauna Kea. They found hydrogen sulfide, the odiferous gas that most people avoid, in Uranus’ cloud tops. The long-sought evidence was published in the April 23rd issue of the journal Nature Astronomy.

The detection of hydrogen sulfide high in Uranus’ cloud deck (and presumably Neptune’s) is a striking difference from the gas giant planets located closer to the Sun — Jupiter and Saturn — where ammonia is observed above the clouds, but no hydrogen sulfide. These differences in atmospheric composition shed light on questions about the planets’ formation and history. 

 
Read the rest of this entry »

Light Echoes Gives Clues To Protoplanetary Disk

Posted on Updated on

This illustration shows a star surrounded by a protoplanetary disk. Material from the thick disk flows along the star’s magnetic field lines and is deposited onto the star’s surface. When material hits the star, it lights up brightly. Credits: NASA/JPL-Caltech

 

Imagine you want to measure the size of a room, but it’s completely dark. If you shout, you can tell if the space you’re in is relatively big or small, depending on how long it takes to hear the echo after it bounces off the wall. 

Astronomers use this principle to study objects so distant they can’t be seen as more than points. In particular, researchers are interested in calculating how far young stars are from the inner edge of their surrounding protoplanetary disks. These disks of gas and dust are sites where planets form over the course of millions of years.

  Read the rest of this entry »