European Space Agency

NASA’s Webb Observatory Requires More Time for Testing and Evaluation; New Launch Window Under Review

Posted on Updated on

NASA Release by Jen Rae Wang / Steve Cole
Headquarters, Washington’

James_Webb_Space_Telescope.jpg 

 

NASA’s James Webb Space Telescope currently is undergoing final integration and test phases that will require more time to ensure a successful mission. After an independent assessment of remaining tasks for the highly complex space observatory, Webb’s previously revised 2019 launch window now is targeted for approximately May 2020. 

“Webb is the highest priority project for the agency’s Science Mission Directorate, and the largest international space science project in U.S. history. All the observatory’s flight hardware is now complete, however, the issues brought to light with the spacecraft element are prompting us to take the necessary steps to refocus our efforts on the completion of this ambitious and complex observatory,” said acting NASA Administrator Robert Lightfoot.

 

Read the rest of this entry »

Advertisements

Newly Discovered Exoplanet May be Best Candidate in Search for Signs of Life

Posted on Updated on

Jason Dittmann
Harvard-Smithsonian Center for Astrophysics

Transiting rocky super-Earth found in habitable zone of quiet red dwarf star

This artist’s impression shows the exoplanet LHS 1140b, which orbits a red dwarf star 40 light-years from Earth and may be the new holder of the title “best place to look for signs of life beyond the Solar System”. Using ESO’s HARPS instrument at La Silla, and other telescopes around the world, an international team of astronomers discovered this super-Earth orbiting in the habitable zone around the faint star LHS 1140. This world is a little larger and much more massive than the Earth and has likely retained most of its atmosphere. Credit: ESO/spaceengine.org 


An exoplanet orbiting a red dwarf star 40 light-years from Earth may be the new holder of the title “best place to look for signs of life beyond the Solar System”. Using ESO’s HARPS instrument at La Silla, and other telescopes around the world, an international team of astronomers discovered a “super-Earth” orbiting in the habitable zone around the faint star LHS 1140. This world is a little larger and much more massive than the Earth and has likely retained most of its atmosphere. This, along with the fact that it passes in front of its parent stars as it orbits, makes it one of the most exciting future targets for atmospheric studies. The results will appear in the 20 April 2017 issue of the journal Nature.

Read the rest of this entry »

Stars Born in Winds from Supermassive Black Holes

Posted on Updated on

 

ESO’s VLT spots brand-new type of star formation

Artist’s impression of a galaxy forming stars within powerful outflows of material blasted out from supermassive black holes at its core. Results from ESO’s Very Large Telescope are the first confirmed observations of stars forming in this kind of extreme environment. The discovery has many consequences for understanding galaxy properties and evolution. Credit: ESO/M. Kornmesser

Observations using ESO’s Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies. These are the first confirmed observations of stars forming in this kind of extreme environment. The discovery has many consequences for understanding galaxy properties and evolution. The results are published in the journal Nature.


A UK-led group of European astronomers used the MUSE and X-shooter instruments on the Very Large Telescope(VLT) at ESO’s Paranal Observatory in Chile to study an ongoing collision between two galaxies, known collectively as IRAS F23128-5919, that lie around 600 million light-years from Earth. The group observed the colossal winds of material — or outflows — that originate near the supermassive black hole at the heart of the pair’s southern galaxy, and have found the first clear evidence that stars are being born within them [1].

Such galactic outflows are driven by the huge energy output from the active and turbulent centres of galaxiesSupermassive black holes lurk in the cores of most galaxies, and when they gobble up matter they also heat the surrounding gas and expel it from the host galaxy in powerful, dense winds [2].

Read the rest of this entry »

The Many Faces of Rosetta’s Comet 67P

Posted on Updated on

Markus Bauer
European Space Agency, Noordwijk, Netherlands

M. Ramy El-Maarry
University of Colorado

Matt Taylor

ESA Rosetta project scientist 

 

Moving_Boulder_on_Comet_67P.jpg
This image showcases changes identified in high-resolution images of Comet 67P/Churyumov-GerasimenkoA 100 foot-wide (30 meter), 28-million-pound (12.8-million-kilogram) boulder. Several sites of cliff collapse on comet 67P/Churyumov-Gerasimenko A 100 foot-wide (30 meter), 28-million-pound (12.8-million-kilogram) boulder, was found to have moved 460 feet (140 meters) on comet 67P/Churyumov-Gerasimenko in the lead up to perihelion in August 2015, when the comet’s activity was at its highest. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

 

NOTE: Make sure you check 0ut the accompanying Space Photo Exploration page for Comet 67P/Churyumov-Gerasimenko


Images returned from the European Space Agency’s Rosetta mission indicate that during its most recent trip through the inner solar system, the surface of comet 67P/Churyumov-Gerasimenko was a very active place – full of growing fractures, collapsing cliffs and massive rolling boulders. Moving material buried some features on the comet’s surface while exhuming others. A study on 67P’s changing surface was released Tuesday, March 21, in the journal Science.

“As comets approach the sun, they go into overdrive and exhibit spectacular changes on their surface,” said Ramy El-Maarry, study leader and a member of the U.S. Rosetta science team from the University of Colorado, Boulder. “This is something we were not able to really appreciate before the Rosetta mission, which gave us the chance to look at a comet in ultra-high resolution for more than two years.”

 

Read the rest of this entry »

Dark Matter Less Influential in Galaxies in Early Universe

Posted on Updated on

Reinhard Genzel
Director, Max-Planck-Institut für extraterrestrische Physik
Garching bei München, Germany
March 15, 2017 

 

New observations indicate that massive, star-forming galaxies during the peak epoch of galaxy formation, 10 billion years ago, were dominated by baryonic or “normal” matter. This is in stark contrast to present-day galaxies, where the effects of mysterious dark matter seem to be much greater. This surprising result was obtained using ESO’s Very Large Telescope and suggests that dark matter was less influential in the early Universe than it is today. The research is presented in four papers, one of which will be published in the journal Nature this week.

 

VLT observations of distant galaxies suggest they were dominated by normal matter


We see normal matter as brightly shining stars, glowing gas and clouds of dust. But the more elusive dark matter does not emit, absorb or reflect light and can only be observed via its gravitational effects. The presence of dark matter can explain why the outer parts of nearby spiral galaxies rotate more quickly than would be expected if only the normal matter that we can see directly were present [1].

Now, an international team of astronomers led by Reinhard Genzel at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany have used the KMOS and SINFONI instruments at ESO’s Very Large Telescope in Chile [2] to measure the rotation of six massive, star-forming galaxies in the distant Universe, at the peak of galaxy formation 10 billion years ago.

What they found was intriguing: unlike spiral galaxies in the modern Universe, the outer regions of these distant galaxies seem to be rotating more slowly than regions closer to the core — suggesting there is less dark matter present than expected [3].

 

Read the rest of this entry »

Ancient Stardust Sheds Light on the First Stars

Posted on Updated on

This research was presented in a paper entitled “Dust in the Reionization Era: ALMA Observations of a z =8.38 Gravitationally-Lensed Galaxy”
by Laporte et al., to appear in 
The Astrophysical Journal Letters.

 
This artist’s impression shows what the very distant young galaxy A2744_YD4 might look like. Observations using ALMA have shown that this galaxy, seen when the Universe was just 4% of its current age, is rich in dust. Such dust was produced by an earlier generation of stars and these observations provide insights into the birth and explosive deaths of the very first stars in the Universe. Credit: ESO/M. Kornmesser
 
Astronomers have used ALMA to detect a huge mass of glowing stardust in a galaxy seen when the Universe was only four percent of its present age. This galaxy was observed shortly after its formation and is the most distant galaxy in which dust has been detected. This observation is also the most distant detection of oxygen in the Universe. These new results provide brand-new insights into the birth and explosive deaths of the very first stars.

An international team of astronomers, led by Nicolas Laporte of University College London, have used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe A2744_YD4, the youngest and most remote galaxy ever seen by ALMA. They were surprised to find that this youthful galaxy contained an abundance of interstellar dust — dust formed by the deaths of an earlier generation of stars.

Follow-up observations using the X-shooter instrument on ESO’s Very Large Telescope confirmed the enormous distance to A2744_YD4. The galaxy appears to us as it was when the Universe was only 600 million years old, during the period when the first stars and galaxies were forming [1].

 

Read the rest of this entry »

Ultracool Dwarf and the Seven Planets

Posted on Updated on

Dr. Paola Rebusco
MIT – Experimental Study Group
ESON USA
eson-usa@eso.org

This artist’s impression shows the view from the surface of one of the planets in the TRAPPIST-1 system. At least seven planets orbit this ultra cool dwarf star 40 light-years from Earth and they are all roughly the same size as the Earth. They are at the right distances from their star for liquid water to exist on the surfaces of several of them. This artist’s impression is based on the known physical parameters for the planets and stars seen, and uses a vast database of objects in the Universe. Credit: ESO/N. Bartmann/spaceengine.org

Astronomers using the TRAPPIST–South telescope at ESO’s La Silla Observatory, the Very Large Telescope (VLT) at Paranal and the NASA Spitzer Space Telescope, as well as other telescopes around the world [1], have now confirmed the existence of at least seven small planets orbiting the cool red dwarf star TRAPPIST-1 [2]. All the planets, labelled TRAPPIST-1b, c, d, e, f, g and h in order of increasing distance from their parent star, have sizes similar to Earth [3].

Read the rest of this entry »

(ESO) ALMA Starts Observing the Sun

Posted on Updated on

Roman Brajsa
Hvar Observatory, University of Zagreb
Croatia

Ivica Skokic
Astronomical Institute of the Czech Academy of Sciences
Ondrejov, Czech Republic

 

This image of the entire Sun was taken in the red visible light emitted by iron atoms in the Sun’s atmosphere. Light at this wavelength originates from the visible solar surface, the photosphere. A cooler, darker sunspot is clearly visible in the disc, and as a visual comparison is shown alongside the image from ALMA at a wavelength of 1.25 millimetres. The full-disc solar image was taken with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Credit: ALMA (ESO/NAOJ/NRAO), NASA.

 

Astronomers have harnessed the Atacama Large Millimeter/submillimeter Array (ALMA)s capabilities to image the millimetre-wavelength light emitted by the Sun’s chromosphere — the region that lies just above the photosphere, which forms the visible surface of the Sun. The solar campaign team, an international group of astronomers with members from Europe, North America and East Asia [1], produced the images as a demonstration of ALMA’s ability to study solar activity at longer wavelengths of light than are typically available to solar observatories on Earth.

Astronomers have studied the Sun and probed its dynamic surface and energetic atmosphere in many ways through the centuries. But, to achieve a fuller understanding, astronomers need to study it across the entire electromagnetic spectrum, including the millimetre and submillimetre portion that ALMA can observe.

 

Read the rest of this entry »

Hubble Finds Big Brother of Halley’s Comet – Ripped Apart By White Dwarf

Posted on Updated on

February 9, 2017
European Space Agency News Release 


Siyi Xu
European Southern Observatory
Garching bei München, Germany

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching, Germany
 

This artist’s impression shows a massive, comet-like object falling towards a white dwarf. New observations with the NASA/ESA Hubble Space Telescope show evidence for a belt of comet-like bodies orbiting the white dwarf, similar to the Kuiper Belt in our own Solar System. The findings also suggest the presence of one or more unseen surviving planets around the white dwarf which may have perturbed the belt sufficiently to hurl icy objects into the burned-out star. Credit: NASA, ESA, and Z. Levy (STScI)

 

The international team of astronomers observed the white dwarf WD 1425+540, about 170 light-years from Earth in the constellation Boötes (the Herdsman) [1]. While studying the white dwarf’s atmosphere using both the NASA/ESA Hubble Space Telescope and the W. M. Keck Observatory the team found evidence that an object rather like a massive comet was falling onto the star, getting tidally disrupted while doing so.

The team determined that the object had a chemical composition similar to the famous Halley’s Comet in our own Solar System, but it was 100,000 times more massive and had twice the proportion of water as its local counterpart. Spectral analysis showed that the destroyed object was rich in the elements essential for life, including carbon, oxygen, sulphur and even nitrogen [2].

Read the rest of this entry »

NASA Television to Provide Coverage of European – Mission Comet Touchdown

Posted on Updated on

NASA New Media Releaase
September 28, 2016 
MEDIA ADVISORY M16-113

Artist’s concept of Rosetta shortly before hitting Comet 67P/Churyumov–Gerasimenko on Sept. 30, 2016. Credits: ESA/ATG medialab

 

NASA Television and the agency’s website will air the conclusion of ESA’s (European Space Agency’s) Rosetta mission from 6:15 to 8 a.m. EDT Friday, Sept. 30, with NASA commentary, interviews and analysis of the successful mission. The Rosetta mission will end with the controlled decent of the spacecraft onto the surface of comet 67P/Churyumov-Gerasimenko at around 7:20 a.m. 

From 8:15 to 10:15 a.m., NASA scientists and engineers involved in ESA’s Rosetta mission will be available for live broadcast interviews from the European Space Operations Center in Darmstadt, Germany.
Read the rest of this entry »